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Abstract— Multi-robot coordination for finding multiple users 

in an environment can be used in numerous robotic applications 

including search and rescue, surveillance/monitoring, and 

activities of daily living assistance. Existing approaches have 

limited coordination between robots when generating team plans 

or do not consider user location probability within these plans. 

This results in long searches and robots potentially revisiting the 

same locations in succession. In this paper, we present a novel 

multi-robot person search system to generate search plans for 

multi-robot teams to find multiple dynamic users before a 

deadline. Our approach is unique in that it simultaneously 

considers the search actions of all robots and user location 

probabilities when generating team plans, where user location 

probabilities are represented as conditional spatial-temporal 

probability density functions. We model this multi-robot person 

search problem as a two-stage optimization problem to maximize 

the expected number of users found before the deadline. Stage 1 

solves the action selection problem to determine a set of team 

actions, and the second stage solves the action allocation problem 

to distribute these actions amongst the robots. Namely, in stage 1, 

a novel conditional multi-period multi-knapsack problem is 

modeled as a min-flow graph solved sequentially by the Bellman-

Ford shortest path algorithm. Stage 2 is a variant of the min-max 

multi-traveling salesperson problem which models the 

environment topology as a search region network and search 

times selected by the previous stage. This stage is solved by a 

novel fuzzy clustering method. Numerous experiments 

comparing our proposed method to other existing approaches 

with varying environment sizes, search durations, and number of 

users showed that our approach was able to find more target 

users before a defined deadline. 

Index Terms— Multi-Robot Coordination, Multiple Dynamic 

People, Search Within a Deadline, Multi-Period Multi-Knapsack 

Problem, Min-Max Multi-Traveling Salesperson Problem. 

I. INTRODUCTION 

OBOTS need to search for people in various environments 

in order to provide assistance. Examples include 
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discovering victims in disaster scenes [1]–[8]; finding lost 

persons in the wilderness [9]–[12]; surveilling urban areas 

[13]–[17]; and locating users in homes/offices to assist with 

daily tasks [18]–[22]. These searches are conducted by either a 

single robot [1], [10], [18]–[21] or a team of robots [2]–[7], 

[9], [11]–[17], [22]. The single robot search problem has been 

extensively studied, however, the number of search targets and 

search environment size are often too large for a single robot 

to find the users within a timeframe. This may result in loss of 

life, personal or property damage, or failure to provide 

assistance. For example, finding residents in long-term care, 

patients and staff in hospitals, employees in an office or 

victims trapped in a building; example scenarios presented in 

Fig. 1. Hence, there is a need to deploy multiple robots. 

   
                   (a)                                            (b)                                  (c) 
Fig. 1.  Examples of typical scenarios of a floor in a: (a) long-term care home, 

(b) hospital, and (c) office building. Robots are orange and target people are 

cyan. Full sized images are included in the Supplementary Material A. 

A number of existing multi-robot person search techniques 

have considered robots that plan independently, where 

individual robots do not consider other robots in their plans 

[9], [12], [14]. As plans are independent, multiple robots may 

end up searching: 1) the same location in close succession, 

even when it is unlikely for a search target to move to that 

location between these searches [9], [12], or 2) locations with 

low probabilities of containing a search target if robots are 

assigned to unique regions within the environment [14]. 

In contrast to planning independently, team coordination 

allows robots to be distributed within an environment visiting 

multiple locations with a high probability of containing a user. 

Coordination can either be weak or strong. Weak coordination 

planners have limited team coordination, as a robot only 

considers other robot actions in later stages of the planning 

process [6], [7], [9], [11], [15]–[17], [22]. To accommodate 
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actions selected earlier in the process, the actions selected later 

are often restricted to either searching a location with a low 

user probability or incurring a large travel time. 

Strong coordination approaches simultaneously consider all 

robots when planning [2]–[5], [13]. They reason about the 

environment layout but do not consider user location 

information in planning. Therefore, these approaches focus on 

optimizing the search for the entire environment (i.e., 

coverage). Many robotic search applications require a search 

deadline to ensure completion of the tasks at hand, including 

locating multiple passengers in airports to guide them to their 

gates [23]; finding survivors within a collapsed building [24]; 

and locating people in a multi-room environment to provide 

them with items, information, or reminders [18]–[20]. 

In our research, we consider robot search problems in 

human-centered environments that have a deadline and can 

benefit from prior user location probabilities. For example, our 

previous work solved the single robot search problem by 

uniquely predicting user locations conditioned on previous 

robot search actions [21]. Herein, we introduce a new problem 

requiring multiple robots to maximize the number of users 

found given the conditional spatial-temporal user location 

probabilities. Namely, we present a novel two-stage multi-

robot person search system (2-MRPSS) for generating 

strongly coordinated search plans for a team of robots to 

maximize the expected number of dynamic users found within 

a deadline. Our approach uniquely generates team search plans 

that simultaneously consider the search actions of all robots 

and user location probabilities. We represent the search 

problem as a two-stage optimization problem, as there are no 

existing one-stage methods to solve this unique problem that 

requires a large solution space. First, we select team actions 

that maximize the number of users found by uniquely 

formulating and solving our novel conditional multi-period 

multi-knapsack problem (CMPKP). Then, we distribute the 

team actions amongst the robots to minimize the longest 

duration robot search plan by solving our novel min-max 

multi-robot search problem (min-max mRSP). 

II. RELATED WORK 

Herein, we discuss existing multi-robot person search 

systems (MRPSS) with real-world robotics considerations. We 

adapt the taxonomy presented in [25] for multi-robot systems 

(MRS): 1) cooperation (cooperative or non-cooperative), 2) 

knowledge (aware or unaware of other robots), 3) coordination 

(strong, weak, or none), and 4) organization (distributed, 

weakly centralized, or strongly centralized).  

MRPSS is a unique subset of MRS, where multiple robots 

search an environment for people. In general, the majority of 

existing MRPSS are strongly centralized, with only a handful 

of distributed approaches. When generating search plans, 

knowledge and coordination types are important to select 

robot search locations and times. MRPSS can be classified as 

follows: 1) unaware with no coordination [9], [12], [14], 2) 

aware with weak coordination [6], [7], [11], [15]–[17], [22], 

and 3) aware with strong coordination [2]–[5], [13].  

A. Unaware Robot Searches with No Coordination 

Unaware robot searches have no coordination between the 

robots. For example, in [9], UAVs searched for a single victim 

of a marine disaster using distress signals from victims’ last 

known locations. They were distributed in the environment, 

and each UAV searched the location which maximized the 

probability of victim detection per unit of distance traveled. 

Simulated experiments showed UAV paths would cross 

frequently and converge causing redundant search actions.  

In [12], a robot team searched for a moving victim lost in 

the wilderness. The victim’s location was modeled using iso-

probability curves which propagated outward from their last 

known location. Each robot searched along a unique curve as 

dictated by a central server. In [14], a team of stationary 

sentinels and UAVs detected trespassers in an outdoor urban 

environment. The environment was discretized into cells with 

equal arrival probability of a trespasser and a loss incurred per 

unit of time a trespasser was present. Upon sentinel detection 

of an intruder, a UAV searched within the area using a 

minimum time coverage approach. Simulated experiments 

showed performance deterioration for non-uniform loss 

functions as the sentinel areas had uneven workloads. 

B. Aware Robot Searches with Weak Coordination 

Weak coordination methods consider robots that are aware 

of each other’s locations, but plan individually [25]. In [16],  

multiple UAVs were used for surveilling crime-prone areas. 

The environment was divided into grids with spatial-temporal 

incident probabilities. Scores were assigned based on when a 

grid was last searched and its incident detection history. Weak 

coordination was achieved by sequentially assigning robots to 

maximum goal locations and reducing the scores of grids 

within the vicinity. Simulation results showed that using 

incident detection history improved coverage. However, 

sequentially assigning robots may result in uneven workloads 

with some robots travelling large distances. 

In [6], a team of UAVs patrolled an urban environment 

damaged by a disaster to provide assistance such as rescuing 

victims. Each UAV was assigned a patrolling area with little 

overlap between the areas. A Monte Carlo look-ahead tree was 

built independently by each UAV to solve a POMDP. Based 

on the joint set of trees, the team selected the joint set of 

actions which maximized information gain without any UAV 

exceeding a maximum damage threshold incurred from the 

disaster. Simulated results showed the approach outperformed 

randomly selecting actions, however, the limited amount of 

overlap between the patrolling areas led to uneven workloads. 

In [17], a team of robots searched for unknown dynamic 

people. Target motion was modeled using Gaussian processes. 

A robot trajectory was obtained by either maximizing the 

expected number of detections (END) or maximizing the 

mutual information (MI) between target locations and 

measurements over a fixed horizon. Team trajectories were 

then selected using a greedy method with individual robot 

trajectories optimized sequentially and conditioned on the 

actions of previous robots. Simulations, conducted in a 

downtown city area, showed that the END objective tracked a 
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higher number of targets compared to the MI objective. 

However, generating robot trajectories sequentially, may 

result in suboptimal plans as the reduced solution space means 

the solutions will be more tractable but less optimal. 

In [22], two weakly coordinated multi-robot approaches for 

social robots were proposed for searching and tracking a 

single person in urban environments to assist them using 

reinforcement learning or a particle filter. Both methods 

maintained and updated the belief of the person’s location. 

Each robot planned independently using a 1-step lookahead 

that selected the next goal location based on a person location 

probability map and the robots’ combined observations. 

Results showed that the particle filter method was able to get 

robots closer to the person’s real position. The robots 

performed better when they communicated with each other. 

In [11], a team of UAVs searched for lost persons in the 

wilderness. A victim’s location was modeled using iso-

probability curves, which propagated outwards from their last 

known location. Each robot was assigned to search along an 

iso-probability curve. Weak coordination was achieved via a 

post-hoc step of assigning UAVs to non-intersecting sections 

of the iso-probability curves to remove redundant actions. 

These assignments were limited to the previously assigned 

iso-probability curves. Simulation results showed that the 

proposed method found more people than coverage methods.  

In [7], a multi-robot approach was proposed for search and 

delivery of medical supply tasks to victims. The tasks were 

allocated using the Hungarian method to minimize the time 

required to attend to all victims. The disaster area was 

partitioned into Voronoi cells with each cell assigned to a 

robot. A frontier-based exploration method was used to track 

the centroid of the Voronoi cell. 2D simulations showed that 

the approach was able to complete a mission scenario. 

However, partitioning the environment to be uniquely 

assigned to each robot may lead to uneven workloads.  

C. Aware Robot Searches with Strong Coordination 

Strong coordination approaches concurrently generate all 

plans for the aware robots [2]–[5], [13]. In [2], robots searched 

for static victims in an unknown damaged building. The team 

plan was based on multi-robot graph traversal algorithms such 

as breadth-first search (BFS) and abortable Dijkstra’s 

algorithm with Hungarian method (ADAHM). Simulated 

experiments showed that BFS found the victims the fastest for 

the large and small environments, and the ADAHM was the 

fastest in medium environments which had fewer paths 

between regions. In [3], a team of semi-autonomous robots 

and human operators searched an unknown disaster scene for 

trapped static victims. A MAXQ hierarchical controller 

assigned robots to subscenes, determined when robots should 

perform victim identification, and when an operator needed to 

intervene. Simulated experiments showed the robots found 

99% of victims with an average coverage of 93.4%. 

In [4], a team of robots searched a damaged building for 

stationary survivors. The team consisted of robots for finding 

survivor locations without prior information, and robots for 

rescuing survivors. Robot plans were arbitrarily generated 

such that a unique robot was assigned to each survivor 

location. Then, the plans were optimized by exhaustively 

removing a location from a plan if adding it to another plan 

would decrease the time to perform the action. In [5], the 

aforementioned approach was modified to remove locations 

from a robot plan if another robot could search the location 

before the victim’s condition was critical and removing that 

location would allow the robot to search a currently 

unsearched location. Simulations showed the modification 

increased the number of victims rescued. 

In [13], a robot team performed graph clearing to pursue 

adversarial attackers. Namely, the team searched the 

environment to find existing attackers while also stopping 

future attackers from entering the searched environment. 

Graph clearing used frontier exploration where robots were 

either guards or followers. The frontiers were contained within 

the joint field of view of the guards. As the frontier expanded, 

the followers were added to the set of guards to maintain the 

required field of view. Simulated experiments demonstrated 

six robots could clear a hospital wing with seventeen regions.  

D. Summary and Challenges 

The unaware MRPSS with no coordination consisted of 

robots in a team having independent search plans which result 

in suboptimal use of resources. For example, robots may 

search a location repeatedly without considering the 

probability of the targets moving to that location between the 

searches [9], [12] or the workload may be unevenly distributed 

between robots [14]. Both cases can result in robots being 

allocated to locations with a low user probability. 

Aware MRPSS with weak coordination consisted of 1) 

assigning robots to areas of the environment with minimal 

overlap [6], [7], 2) selecting a combination of independently 

generated plans [15], 3) generating robot plans sequentially 

[16], [17], [22], or 4) performing a post-hoc step on 

independent plans to remove redundant actions [11]. Similar 

to the unaware case, uneven workload may result between the 

robots and combining independent plans without considering 

the compatibility between the plans may also result in 

redundant actions. While the sequential and post-hoc 

coordination approaches reduce uneven workload and 

redundancy, actions selected later in the planning process must 

accommodate for actions already assigned. As a result, a later 

action is often restricted to either searching a nearby low 

probability location or incurring a large travel time to search a 

faraway high probability location.  

Aware MRPSS with strong coordination simultaneously 

generate plans for the entire team [2]–[5], [13]. These 

coverage and graph clearing problems solve a different 

problem than our proposed problem as they require the robots 

to minimize the time to explore or clear an environment, as 

opposed to maximizing the number of dynamic users found. 

Additionally, the coverage techniques have focused only on 

finding static users [2]–[5] and have not yet considered 

dynamic users in the environment. Namely, they do not search 

regions that have already been searched, but people are 

dynamic and can return to already visited regions. The graph 
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clearing approach in [13] focused on assigning robots to block 

regions even when there is a low probability that a user may 

enter them. Therefore, both the coverage and clearing 

approaches plan consider the environment layout to maximize 

the number of regions searched, and do not consider user 

location probabilities. However, reasoning about user location 

probabilities is important as there is no need to search areas 

where there is little to no probability of people being there. 

We introduce the new problem of multiple robots finding 

multiple dynamic users in a human-centered environment 

before a deadline. Due to the aforementioned limitations, the 

existing methods cannot be directly applied to our novel 

problem. Thus, we have developed a novel aware 2-MRPSS 

with strong coordination. Our approach reasons about user 

location information, represented by conditional spatial-

temporal probability density functions (PDFs) to determine the 

expected number of users found by each search action in the 

team plan. Therefore, the team search actions have a high 

probability of finding the users within the search duration. 

III. THE MULTI-ROBOT PERSON SEARCH PROBLEM 

The multi-robot person search problem is defined herein as a 

team of robots cooperating to search an environment to find 

dynamic people within a specified time frame. Examples of 

typical scenarios are presented in Fig. 1.  

Environment: The environment is an indoor area occupied by 

the users daily and consists of a set of regions 𝑅 = {𝑅1, … , 𝑅𝐼}, 

with a total of 𝐼 regions. 

Target Users: The target users 𝑈′ = {𝑈1
′ , … , 𝑈𝑍

′ } are those 

who need to be found during the search. 

Time Frame, Periods and Windows: The time frame 

specifies the start time, 𝑡𝑠𝑡𝑎𝑟𝑡, and end time, 𝑡𝑒𝑛𝑑, of the 

search. It is divided into Ω discrete time periods 𝑇 =

(𝑇1, … , 𝑇Ω) of equal length 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. A time window is a 

contiguous subset of time periods 𝑇𝑗,𝑘 = (𝑇𝑗 , … , 𝑇𝑘). 

Robot Team: The robot team consists of 𝐵 robots ℝ =
{ℝ1, … , ℝ𝐵}. The robots perform search actions, 𝑎𝑖,𝜔,𝑡, 

consisting of searching in 𝑅𝑖 during 𝑇𝜔 for a duration of 𝑡. We 

discretize the problem by considering durations as a multiple of 

𝑡𝑢𝑛𝑖𝑡. 𝑡𝑖
𝑖′

 denotes the time to move between 𝑅𝑖 and 𝑅𝑖′ . At the 

start of the search, each robot ℝ𝑏 has an initial region 𝑅0
(𝑏)

. 

Planning Duration: The planning duration, 𝑡𝑝𝑙𝑎𝑛, is the 

amount of time allotted for generating the team plan. 

Search Query: The search query, 𝑆, specifies the target users, 

the time frame, the team, and the planning duration. 

Team Plan: The team plan, 𝑇𝑃, is generated to maximize the 

number of target users found given 𝑆. 𝑇𝑃 specifies a search 

plan, 𝑆𝑃𝜔
(𝑏)

, for each robot ℝ𝑏 during each time period 𝑇𝜔 

consisting of an ordered set of actions: 

 𝑇𝑃 = ({𝑆𝑃1
(1)

, … , 𝑆𝑃1
(𝐵)

}, … , {𝑆𝑃Ω
(1)

, … , 𝑆𝑃Ω
(𝐵)

}), (1a) 

 𝑆𝑃𝜔
(𝑏)

= (𝑎𝜔,1
(𝑏)

, … , 𝑎𝜔,𝐻(𝑏)
(𝑏)

), (1b) 

where 𝑎𝜔,ℎ
(𝑏)

 denotes the ℎ𝑡ℎ  search action of 𝑆𝑃𝜔
(𝑏)

 which 

occurs at 𝑅𝜔,ℎ
(𝑏)

 during 𝑇𝜔 for a duration of 𝑡𝜔,ℎ
(𝑏)

. We define 

𝑡(𝑆𝑃𝜔
(𝑏)

) as the time required to perform 𝑆𝑃𝜔
(𝑏)

. Multiple robots 

can work together to search 𝑅𝑖 during 𝑇𝜔. 

Team Action: A team action, 𝑎𝑖,𝜔
∗ , is the culmination of search 

actions performed in 𝑅𝑖 during 𝑇𝜔. The time associated with a 

team action, 𝑡(𝑎𝑖,𝜔
∗ ), is determined as the total time of all the 

search actions performed in 𝑅𝑖 during 𝑇𝜔: 

 𝑡(𝑎𝑖,𝜔
∗ ) = ∑ (𝑡𝑘,ℎ

(𝑏)
)

a𝑘,ℎ
(b)

∈𝕊𝑖,𝜔
, (2a) 

 𝕊𝑖,𝜔 = {a𝑘,ℎ
(b)

|a𝑘,ℎ
(b)

∈ 𝑇𝑃, 𝑅𝑘,ℎ
(𝑏)

= 𝑅𝑖 , 𝑇𝑘 = 𝑇𝜔}. (2b) 

A complete list of all the symbols used in this paper is 

provided in the Supplementary Material B. 

IV. PROPOSED MULTI-ROBOT PERSON SEARCH SYSTEM 

Our proposed 2-MRPSS generates a team plan, 𝑇𝑃, that 

maximizes the number of target users found within a time 

frame, as indicated by the team total reward, 𝑊(𝑇𝑃). Namely, 

𝑇𝑃 is generated such that it maximizes 𝑊(𝑇𝑃) without any 

robot exceeding the allowable search time in any time period: 

maximize
𝑇𝑃

  𝑊(𝑇𝑃), (3) 

subject to  𝑡(𝑆𝑃𝜔
(𝑏)

) ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝑆𝑃𝜔
(𝑏)

∈ 𝑇𝑃, 

where 𝑡(𝑆𝑃𝜔
(𝑏)

) = ∑ (𝑡𝜔,ℎ
(𝑏)

+ 𝑡
𝑅𝜔,ℎ−1

(𝑏)

𝑅𝜔,ℎ
(𝑏)

)
𝑎𝜔,ℎ

(𝑏)
∈𝑆𝑃𝜔

(𝑏) . 

The time spent by a robot 𝑡(𝑆𝑃𝜔
(𝑏)

) is the summation of time 

spent both searching and moving to its allocated regions.  

A. 2-MRPSS Framework 

The problem of generating a team plan is NP-hard, as is 

even generating a single robot search plan [21]. Therefore, it is 

computationally impractical to solve the entire problem 

together due to the large number of possible team plans, 

𝐼
(Ω×𝐵×

𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 )
. For example, for a problem size of 𝐼 = 30 

regions, Ω = 3 time periods, 𝐵 = 3 robots, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠, 

and 𝑡𝑢𝑛𝑖𝑡 = 15𝑠, the total number of possible team plans is 

4.4 × 10697. Our 2-MRPSS solves the problem through a two-

stage approach: 1) first selecting team search actions, and 2) 

assigning these team actions among the robots to generate a 

team plan. As there is no available one-stage approach to solve 

our problem, in our two-stage approach, the system may not 

know the actual travel time to arrive at a specific region (the 

search ordering of these regions is not determined until the 

second stage). Instead, a constant travel time is estimated. 

However, in a realistic scenario: 1) successive regions are 

expected to have low travel times, 2) the estimated travel time 

will be close to the actual through iteration, and 3) optimal 

solutions will spend more time searching than traveling. Thus, 

it is expected that a two-stage approach will have the same 

optimal solutions as a hypothetical one-stage approach. In 

fact, the exponential reduction in solution space means that for 

real-time applications, the quality of a two-stage approach will 

be better. The 2-MRPSS framework is presented in Fig. 2. 

Prior to the search, user location data is acquired during 

several days while the user performs daily activities. This data 

is used to determine user location PDFs, representing the 
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probability of a user being in a region 𝑅𝑖 during a time 

window 𝑇𝑗,𝑘. Based on the PDFs, rewards for the team actions 

are assigned. Then, a set of unallocated team search actions, 

𝑈𝐴, is selected to maximize the reward acquired by solving a 

new variant of the multi-knapsack problem (mKP) [26], which 

we define herein as the conditional multi-period multi-

knapsack problem (CMPMKP). The CMPMKP, stage 1 of our 

approach, is modeled by a min-flow graph. In stage 2, the 

actions in 𝑈𝐴 are allocated to the robots such that the longest 

robot plan in each time period is minimized. For this 

allocation, we have developed an extension of the min-max 

multi-traveling salesperson problem (min-max mTSP) [27], 

which we define as the min-max multi-robot search problem 

(min-max mRSP). The min-max mRSP is modeled by a search 

region network. If the resulting 𝑇𝑃 is infeasible, i.e., it cannot 

be executed within the allotted time, the procedure is iterated 

to determine 𝑈𝐴 using a larger travel time estimate. During 

the plan execution, if a target user is found, replanning 

generates a plan optimized for the remaining target users. 

The below subsections present the detailed procedure of our 

2-MRPSS framework highlighting our novel contributions. 

 
Fig. 2.  2-MRPSS framework. 

B. User Location Model 

The user location model is extended from [21] for a team of 

robots. Herein, we remove the assumption that the start and 

end time of data acquired on the users must align with the start 

and end of time periods, and by integrating over the time 

periods. We capture the conditional dependence of user 

location probabilities in sets of non-contiguous time periods 

i.e., a user in 𝑅1 for 𝑇1 and 𝑇3, but not during 𝑇2. The model 

formulation is further discussed in Supplementary Material C.  

C. Rewards for the Team Actions 

The reward for 𝑈𝐴 is denoted as 𝑊(𝑈𝐴) and is based on the 

expected number of target users found when executing 𝑈𝐴: 

 𝑊(𝑈𝐴) = ∑ 𝑃(𝜃𝑧
𝑈𝐴)𝑍

𝑧=1 ,  (4) 

where 𝑃(𝜃𝑧
𝑈𝐴) is the probability of finding a target user 𝑈𝑧

′  

when executing 𝑈𝐴. 𝑃(𝜃𝑧
𝑈𝐴) can be expressed in terms of 𝜃𝑧,𝑖

𝑈𝐴 

which indicates the occurrence of finding 𝑈𝑧 in 𝑅𝑖 when 

executing 𝑈𝐴. Namely, the probability of finding 𝑈𝑧
′  is equal to 

the probability of finding 𝑈𝑧
′  in any region: 

 𝑃(𝜃𝑧
𝑈𝐴) = 𝑃(⋃ 𝜃𝑧,𝑖

𝑈𝐴𝐼
𝑖=1 ). (5) 

Combining Eqs. (5) and (6), the reward is:  

 𝑊(𝑈𝐴) = ∑ (𝑃(⋃ 𝜃𝑧,𝑖
𝑈𝐴𝐼

𝑖=1 ))𝑍
𝑧=1 ,  (6) 

and is updated to assume that a user will never be found in two 

regions during the full execution of a team plan, and as a result 

𝜃𝑧,𝑖
𝑈𝐴 and 𝜃𝑧,𝑖′

𝑈𝐴  ∀𝑖′ ≠ 𝑖 are treated as mutually exclusive, 

allowing the union to be computed as a summation: 

 𝑊(𝑈𝐴) =  ∑ (∑ 𝑃(𝜃𝑧,𝑖
𝑈𝐴)𝐼

𝑖=1 )𝑍
𝑧=1 . (7) 

The revised reward captures that replanning occurs when a user 

is found, creating a new plan optimized for the remaining 

users. 𝑃(𝜃𝑧,𝑖
𝑈𝐴) is determined by a local planner that generates a 

plan for searching within a specific region given the time to 

search the region in all time periods, {𝑡(𝑎𝑖,𝑘
∗ )∀𝑘 ∈ [1, 𝜔]}. Our 

proposed 2-MRPSS can incorporate any local search planner 

that can provide 𝑃(𝜃𝑧,𝑖
𝑈𝐴). This paper presents a multi-robot 

multi-period coverage planner that uses a grid-based technique 

to generate a team plan to search within a region. The 

technique divides the region into cells and assigns each robot a 

set of cells to search in each time period. Details of this local 

search method are present in the Supplementary Material D. 

D. Team Search Action Selection 

Based on the rewards for the team actions, a set of search 

actions is determined. Selecting the search actions for each 

individual robot is infeasible due to the large number of 

combinations; e.g., for 𝐼 = 30 regions, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠, 𝐵 = 3 

robots, and 𝑡𝑢𝑛𝑖𝑡 = 15𝑠, there is a total of (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 )
IB

=

(
900

15
)

(30)(3)

≈ 1.1 × 10160 combinations of unordered search 

plans. Instead, the team search action selection determines the 

team actions in 𝑈𝐴 to maximize the total reward acquired: 

maximize
𝑡(𝑎𝑖,𝜔

∗ )∈𝑈𝐴 
 𝑊(𝑈𝐴) = ∑ (∑ 𝑃(𝜃𝑧,𝑖

𝑈𝐴)𝑍
𝑧=1 )𝐼

𝑖=1 , (8) 

subject to  ∑ (𝑡(𝑎𝑖,𝜔
∗ ) + 𝛾𝑖,𝜔𝑡𝑚𝑜𝑣𝑒)𝐼

𝑖=1 ≤ 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω], 

where  𝛾𝑖,𝜔 = {
0, 𝑖𝑓 𝑡(𝑎𝑖,𝜔

∗ ) = 0

1, 𝑖𝑓 𝑡(𝑎𝑖,𝜔
∗ ) > 0 

, ∀𝜔 ∈ [1, Ω], ∀𝑖 ∈ [1, I]. 

As 𝑈𝐴 is unordered, the actual travel time required to perform 

the set of actions is estimated to be 𝑡𝑚𝑜𝑣𝑒. 𝛾𝑖,𝜔 represents the 

occurrence of the team searching 𝑅𝑖 during 𝑇𝜔. 𝑡𝑚𝑜𝑣𝑒 is only 

added if the region is searched. 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑  represents the search 

time available for the 𝐵 robots in the team to perform all the 

selected team search actions 𝑎𝑖,𝜔
∗  in each time period 𝑇𝜔. 

Selecting the team search actions allows the team to share 

actions as needed between the robots. As the team can share 

actions, it is expected that a team plan 𝑇𝑃 can be generated 

from 𝑈𝐴 such that each robot completes its search plan in each 

time period within the allotted time 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. The iteration step 

in Fig. 2 is incorporated to check the feasibility of the team 

plan 𝑇𝑃 using Eq. (3), and if the plan is infeasible, 𝑈𝐴 is 

replanned with a larger travel time estimate 𝑡𝑚𝑜𝑣𝑒 in Eq. (8). 

To optimally solve Eq. (8), we have developed a new 

CMPMKP solver extended from the single robot method we 

presented in [21]. It uses a min-flow graph to consider a 

discrete combination of team search actions given that both 

𝑡𝑚𝑜𝑣𝑒 and 𝑡(𝑎𝑖,𝜔
∗ ) must be multiples of 𝑡𝑢𝑛𝑖𝑡. 𝑡𝑢𝑛𝑖𝑡 is 

introduced to reduce the infinite set of continuous actions to a 
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finite set of discrete actions. The time elapsed in each time 

period, 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , is the cumulative maximum allowable search 

time for the B robot team. This allows the approach to select a 

set of team search actions in which each robot will spend 

approximately 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 searching within each time period. For 

problems with large search durations, solving the CMPMKP is 

time-consuming, and a time-efficient approximation is to solve 

the min-flow graph in each time period sequentially [21]. For 

the multi-robot search, we use a sequential approach as the 

time allotted in each time period, 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑, can be large. There 

are Ω min-flow graphs, one for each time period, denoted as 

(𝐺1, … , 𝐺Ω). Each graph is solved sequentially starting at 𝐺1.  

 
Fig. 3.  Sequential min-flow graph 𝐺ω for the CMPMKP. 

The sequentially min-flow graph 𝐺ω used to solve the 

CMPMKP is presented in Fig. 3. The y-axis represents a time 

elapsed in the time period, 𝑄𝜔 and the x-axis represents a 

region 𝑅𝑖. At each node 𝑁𝑄𝜔
𝑖 , a decision is made for how much 

time the team will spend searching 𝑅𝑖 in 𝑇𝜔. This considers 

that 𝑄𝜔 time has already been allocated to {𝑅1, … , 𝑅𝑖−1} by 

𝐺𝜔, and (𝑡(𝑎𝑖,1
∗ ), … , 𝑡(𝑎𝑖,𝜔−1

∗ )) search times have already 

been allocated to 𝑅𝑖 in (𝑇1, … , 𝑇𝜔−1) by (𝐺1, … , 𝐺𝜔−1). Each 

possible decision at a node is represented by an edge 𝐸𝑡(𝑎𝑖,𝜔
∗ )

𝑖  

indicating a transition from 𝑁𝑄𝜔
𝑖  to 𝑁𝑄𝜔+𝑡(𝑎𝑖,𝜔

∗ )+𝛾𝑖,𝜔𝑡𝑚𝑜𝑣𝑒
𝑖  based 

on the selected team search time 𝑡(𝑎𝑖,𝜔
∗ ). 

 Each edge cost, 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔

∗ )
𝑖,𝜔 ), is computed based on the 

negative expected number of users found when performing the 

action, 𝑈𝐴𝑖,𝜔, corresponding to searching 𝑅𝑖 for time 𝑡(𝑎𝑖,𝜔
∗ ): 

 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔

∗ )
𝑖,𝜔 ) = − ∑ 𝑃 (⋃ 𝜃

𝑧,𝑖

𝑈𝐴
𝑖,𝜔′ω

𝜔′=1 )𝑍
𝑧=1   

                           + ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝑈𝐴
𝑖,𝜔′ω−1

𝜔′=1 )𝑍
𝑧=1 . (9) 

𝑈𝐴𝜔 denotes the team actions selected during 𝑇𝜔, and is 

determined to be the set of actions, {𝑈𝐴1,𝜔, … , 𝑈𝐴𝐼,𝜔} that 

form the minimum cost path across 𝐺𝜔 as selected using the 

Bellman-Ford algorithm [28]. 𝑈𝐴 is then the union of the 

actions in each time period (𝑈𝐴1, … , 𝑈𝐴Ω).   

E. Action Allocation to Robots 

𝑈𝐴 is used to generate a 𝑇𝑃 that satisfies Eq. (3). Namely, 

we allocate the team search actions during each time period 

𝑇𝜔, denoted as 𝑈𝐴𝜔, among the robots to generate 𝑇𝑃𝜔, which 

minimizes the duration of the longest robot plan during 𝑇𝜔: 

min
𝑇𝑃𝜔

max
𝑏

   ∑ (𝑡𝜔,ℎ
(𝑏)

+ 𝑡
𝑅𝜔,ℎ−1

(𝑏)

𝑅𝜔,ℎ
(𝑏)

)
𝑎𝜔,ℎ

(𝑏)
∈𝑇𝑃𝜔

, (10) 

subject to  ∑ (𝑡𝑘,ℎ
(𝑏)

)
𝑎𝑘,ℎ

(𝑏)
∈𝕊𝑖,𝜔

= 𝑡(𝑎𝑖,𝜔
∗ ), 𝑖 ∈ [1, I], 

where 𝕊𝑖,𝜔 = {a𝑘,ℎ
(b)

|a𝑘,ℎ
(b)

∈ 𝑇𝑃, 𝑅𝑘,ℎ
(𝑏)

= 𝑅𝑖 , 𝑇𝑘 = 𝑇𝜔}. 

The above min-max objective is used as all search plans will 

be feasible within the allotted time if the longest duration plan 

is feasible. Namely, if any mapping 𝑓: 𝑈𝐴𝜔 → 𝑇𝑃𝜔 generates 

a feasible team plan, the min-max 𝑇𝑃𝜔 will also be feasible.

 To address the problem in Eq. (10), we extend the min-max 

mTSP [27] and introduce our new min-max mRSP. The min-

max mTSP considers the problem of a team visiting multiple 

regions while minimizing the longest duration robot plan [27]. 

This only considers closed tours, which arbitrarily start and 

end at one of the regions to be visited, as well as a single robot 

visiting each region. The duration of a closed tour is invariant 

to the selected start/end region. However, we need to consider 

the starting regions of the robots which may not coincide with 

the regions in 𝑈𝐴𝜔. As a result, there may be additional time 

required for a robot to move to the first search region. There is 

also no need for a robot to return to its starting location, and  it 

may be beneficial for multiple robots to work together in 

searching a single region. Therefore, our min-max mRSP 

includes the additional considerations of robots: 1) starting 

regions, 2) not returning to their starting regions, and 3) 

working together to complete a single team search action. We 

model the min-max mRSP using a search region network, 

where the distances between regions are stored in a distance 

matrix, and the search times for the regions are stored in a 

vector. To solve this min-max mRSP, we present a novel 

fuzzy clustering team search action allocator. Fuzzy clustering 

was used as it is the only clustering method that allows for 

region sharing between robots. Hence, multiple robots can 

collaboratively search a single region. This differs from 

existing approaches that require only one assigned robot to 

search a specific region without the aid of other robots.   

1)  Fuzzy Clustering Team Search Action Allocator 

Fuzzy clustering [29] is a clustering method in which a 

team action can be shared between multiple robots. Our fuzzy 

clustering approach uses expectation maximization (EM) [30]. 

In each time period, 𝑇𝜔, a set of fuzzy clusters, 𝐹𝐶𝜔 =

{𝐹𝐶𝜔,1, … , 𝐹𝐶𝜔,𝐹} is considered. Each cluster is represented as 

𝐹𝐶𝜔,𝑓 = {ℝ𝜔,𝑓 , 𝜌1,𝜔,𝑓 , … , 𝜌𝐼,𝜔,𝑓}, where 𝑓 is the cluster’s 

unique ID, ℝ𝜔,𝑓 is the robot assigned to the cluster, and each 

𝜌
𝑖,𝜔,𝑓

 is the ownership of 𝐹𝐶𝜔,𝑓 over action 𝑎𝑖,𝜔
∗ ∈ 𝑈𝐴. The set 

of parameters ℝ𝜔,𝑓, ∀𝑓 ∈ [1, 𝐹] and 𝜌
𝑖,𝜔,𝑓

, ∀𝑖 ∈ [1, 𝐼] are 

determined to minimize the highest cluster cost while the 

robot team completes the team actions specified in 𝑈𝐴𝜔: 

min
𝐹𝐶𝜔 

max
𝑓

  Ψ(𝐹𝐶𝜔,𝑓),  (11) 

subject to  ∑ (𝜌𝑖,𝜔,𝑓)𝑓∈[1,𝐹] = 1, 𝑖 ∈ [1, I], 

where Ψ(𝐹𝐶𝜔,𝑓) is the cost of cluster 𝐹𝐶𝜔,𝑓, representing the 
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amount of time the robot ℝ𝜔,𝑓 would take to perform the set 

of actions associated with 𝐹𝐶𝜔,𝑓. The constraint in Eq. (11) 

guarantees all actions in 𝑈𝐴𝜔 are completed by the team.  

 
Fig. 4.  Architecture of fuzzy clustering solver for min-max mRSP. 

Our overall fuzzy clustering approach is presented in Fig. 4. 

Starting with 𝑈𝐴𝜔, we generate initial clusters without robots, 

i.e. ℝ𝜔,𝑓 = NULL. In the expectation step the cost of each 

cluster, Ψ(𝐹𝐶𝜔,𝑓), is evaluated. Next, the maximization step 

updates the values of 𝜌𝑖,𝜔,𝑓 to reduce the highest cost cluster. 

Then the expectation step is repeated. If no beneficial change 

is made by the maximization step, the first EM phase is 

completed, and we assign robots to the clusters and the EM 

phase is repeated with the assigned robots. After the second 

EM phase, we add the highest cost cluster to the proposed 

team plan as a robot search plan. If the team plan has fewer 

than B robot search plans, the EM phase with robots is 

repeated to minimize the maximum cost of the remaining 

clusters. Once the proposed team plan has B robot search 

plans, we check if it is the best team plan generated thus far 

with minimum longest duration search plan, Eq. (10). If 

planning time remains, the entire approach is repeated to 

generate multiple proposed team plans. If not, the best 

proposed team plan is output as 𝑇𝑃𝜔. 

 We first perform an EM phase on clusters with the robots 

unassigned to distribute actions without being restricted by 

robot locations. Then, robots are assigned for the second EM 

phase so the clusters can optimize for the robot locations. 

Moreover, by iteratively adding the highest cost cluster, the 

EM can further improve all cluster costs. The details of each 

module in our clustering architecture are discussed below. 

a. Generate Initial Clusters Without Robots 

Using the unallocated actions 𝑈𝐴𝜔, an initial set of 𝐹 = 𝐵 

clusters 𝐹𝐶𝜔 is generated such that the joint ownership of all 

the clusters accounts for all actions in 𝑈𝐴𝜔, Eq. (11). The 

approach used to determine the initial clusters is K-means++, 

which fully assigns each action 𝑎𝑖,𝜔
∗  with search duration 

𝑡(𝑎𝑖,𝜔
∗ ) > 0 to a single cluster, 𝐹𝐶𝜔,𝑓, by setting the 

corresponding 𝜌𝑖,𝜔,𝑓 to 1 [31]. ℝ𝜔,𝑓 is set to NULL for all 

clusters, indicating that a robot is not assigned. Once the initial 

cluster 𝐹𝐶𝜔 is generated, the expectation is calculated.  

b. Expectation: Determine Cost of Clusters 

To compute the cost of a cluster Ψ(𝐹𝐶𝜔,𝑓) we first 

determine the order in which the actions will be performed, 

referred to as the cluster plan 𝐶𝑃𝜔,𝑓 = (𝑎𝜔,1
(𝑓),𝐶𝑃

, … , 𝑎
𝜔,𝑀𝑓

𝐶𝑃
(𝑓),𝐶𝑃

). 

𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 denotes the 𝑔𝑡ℎ search action of the cluster plan with 

search region 𝑅𝑔
(𝑓),𝐶𝑃

, time period 𝑇𝜔, and search duration 

𝑡 (𝑎𝜔,1
(𝑓),𝐶𝑃

). 𝐶𝑃𝜔,𝑓 must complete all actions with both non-

zero ownership and search duration in 𝐹𝐶𝜔,𝑓. If 𝑎𝑖,𝜔
∗  is mapped 

to 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

, then 𝑡 (𝑎𝜔,𝑔
(𝑓),𝐶𝑃

) = 𝜌𝑖,𝜔,𝑓𝑡(𝑎𝑖,𝜔
∗ ) and 𝑅𝑔

(𝑓),𝐶𝑃
= 𝑅𝑖. 

To determine 𝐶𝑃𝜔,𝑓, we solve the TSP [32]. 𝑇𝑆𝑃1, considers 

when the cluster does not have a robot assigned and ℝ𝜔,𝑓 =

𝑁𝑈𝐿𝐿. 𝑇𝑆𝑃2, considers when ℝ𝜔,𝑓 ≠ 𝑁𝑈𝐿𝐿.  

𝑻𝑺𝑷𝟏: During the first EM phase, ℝ𝜔,𝑓 = 𝑁𝑈𝐿𝐿, a closed tour 

is considered with arbitrary start/end region, 𝑅1
(𝑓),𝐶𝑃

. The 

objective is to generate 𝐶𝑃𝜔,𝑓 with minimum total travel time: 

Ψ(𝐹𝐶𝜔,𝑓) = min
𝐶𝑃𝜔,𝑓

∑ (𝑡
𝑅𝑔−1

(𝑓),𝐶𝑃

𝑅𝑔
(𝑓),𝐶𝑃

) + 𝑡
𝑅

𝑀𝑓
𝐶𝑃

(𝑓),𝐶𝑃

𝑅1
(𝑓),𝐶𝑃𝑀𝑓

𝐶𝑃

𝑔=2 . (12) 

𝑻𝑺𝑷𝟐: During the second EM phase, ℝ𝜔,𝑓 = ℝ𝑏, the start 

region is the robot’s initial region during 𝑇𝜔, denoted as 𝑅𝜔,0
(𝑏)

, 

and the robot is not required to return to 𝑅𝜔,0
(𝑏)

. The objective is 

again to generate 𝐶𝑃𝜔,𝑓 while minimizing total travel time: 

Ψ(𝐹𝐶𝜔,𝑓) = min
𝐶𝑃𝜔,𝑓

𝑡
𝑅𝜔,0

(𝑏)

𝑅1
(𝑓),𝐶𝑃

+ ∑ (𝑡
𝑅𝑔−1 

(𝑓),𝐶𝑃

𝑅𝑔
(𝑓),𝐶𝑃

)
𝑀(𝑓)
𝑔=2 . (13) 

For both TSP cases, a Lin-Kernighan heuristic (LKH) 

approach [33] is used to generate the solution in real-time. 

After solving the TSP, we have the cost of each cluster 

Ψ(𝐹𝐶𝜔,𝑓) and the current value of the objective in Eq. (12). 

To minimize the objective, we perform the maximization step.  

c. Maximization: Reduce Cost of Clusters 

To reduce the cluster with the highest cost 𝐹𝐶̅̅̅̅
𝜔, we aim to 

transfer ownership to another cluster 𝐹𝐶𝜔
′ . To achieve this, we 

first attempt to transfer ownership from 𝐹𝐶̅̅̅̅
𝜔 to the cluster 

closest to it, 𝐹𝐶𝜔
̇ , where cluster distance is defined by their 

closest pair of actions. If this transfer results in an increase to 

the objective in Eq. (11), then the transfer is not performed, 

and we group 𝐹𝐶̅̅̅̅
𝜔 and 𝐹𝐶𝜔

̇  into a group called the close set, 

𝐶𝑆. The remaining clusters are grouped into the far set, 𝐹𝑆. 

After creating 𝐶𝑆 and 𝐹𝑆, we iteratively attempt to transfer 

ownership from 𝐶𝑆 to 𝐹𝑆 using the procedure in Fig. 5.  

Step 1: Create Close and Far Sets of Clusters 

 Initially, we create a close set of clusters, 𝐶𝑆, containing 

only the cluster with the highest cost 𝐹𝐶𝜔
̅̅ ̅̅ ̅̅  and a far set of 

clusters, 𝐹𝑆, containing the rest of the clusters in 𝐹𝐶𝜔. 
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and Robots Unassigned 
 

If 

Clusters 

Changed 

 Assign Robots 

 

Generate Initial Clusters  

Without Robots 
 

If Number of Clusters in 

Proposed Team Plan = B 
  

Add the Highest Cost Cluster to 

the Proposed Team Plan  
 

If Planning Time Exceeded 
  

Expectation: Determine Cost of 

Clusters  

 

If Planning 
Time Not 

Exceeded 
  

Check if Proposed Team Plan is 

the Best Team Plan  

 

Maximization: Reduce Cost of 

Clusters 
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Step 2: Transfer Action Ownership from Close Set to Far Set 

 To transfer action ownership from CS to FS, the closest pair 

of clusters between the two sets are selected, {𝐹𝐶𝜔,𝑓 ∈

𝐶𝑆, 𝐹𝐶𝜔,𝑓′ ∈ 𝐹𝑆}. The distance 𝐶𝑇𝑓
𝑓′

 between 𝐹𝐶𝜔,𝑓 and 

𝐹𝐶𝜔,𝑓′ is determined based on their closest pair of actions 

with non-zero search times, 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 and 𝑎
𝜔,𝑔′

(𝑓′),𝐶𝑃
. The distance 

between 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 and 𝑎
𝜔,𝑔′

(𝑓′),𝐶𝑃
 is the travel time for moving 

between their corresponding regions.  

 
Fig. 5.  Flow chart of maximization step. 

We aim to transfer ownership 𝜌𝑖,𝜔,𝑓 of 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 from 𝐹𝐶𝜔,𝑓 to 

𝐹𝐶𝜔,𝑓′. Similar to when solving the CMPMKP, we require 

that all search actions 𝑎𝜔,1
(𝑓),𝐶𝑃

 have a duration 𝑡 (𝑎𝜔,1
(𝑓),𝐶𝑃

) that is 

a multiple of 𝑡𝑢𝑛𝑖𝑡. Therefore, an amount of ownership of 

𝜌𝑖,𝜔,𝑓, denoted as 𝜌𝑖,𝜔
+ , can only be transferred in multiples of 

𝑡𝑢𝑛𝑖𝑡

𝑡(𝑎𝑖,𝜔
∗ )

. After a transfer, the resulting ownerships of 𝐹𝐶𝜔,𝑓 and 

𝐹𝐶𝜔,𝑓′ over action 𝑎𝑖,𝜔
∗  are: 

 𝜌𝑖,𝜔,𝑓
+ = 𝜌𝑖,𝜔,𝑓 − 𝜌𝑖,𝜔

+ , (14a)  

𝜌𝑖,𝜔,𝑓′
+ = 𝜌𝑖,𝜔,𝑓′ + 𝜌𝑖,𝜔

+ . (14b) 

The new costs are Ψ+(𝐹𝐶𝜔,𝑓) and Ψ+(𝐹𝐶𝜔,𝑓′), respectively. 

We select the largest 𝜌𝑖,𝜔
+  such that Ψ+(𝐹𝐶𝜔,𝑓′) does not 

exceed the worst cluster cost Ψ(𝐹𝐶𝑓
̅̅ ̅̅ ̅). Also, the new receiving 

cluster cost Ψ+(𝐹𝐶𝜔,𝑓′) must not exceed the original giving 

cluster cost Ψ(𝐹𝐶𝜔,𝑓) if on the next iteration of the 

maximization step 𝐹𝐶𝜔,𝑓′ will receive an action before 𝐹𝐶𝜔,𝑓: 

maximize  𝜌𝑖,𝜔
+ , (15) 

subject to  Ψ+(𝐹𝐶𝜔,𝑓′) < Ψ(𝐹𝐶𝑓
̅̅ ̅̅ ̅), 

 Ψ+(𝐹𝐶𝜔,𝑓′) < Ψ(𝐹𝐶𝜔,𝑓), 𝑖𝑓 𝜌𝑖,𝜔,𝑓
+ = 0 , 𝑎𝑖,𝜔

∗ = a�̃�, 

where a�̃� is the action in 𝐹𝐶𝜔,𝑓 closest to 𝐶𝑆. If the maximum 

value that satisfies Eq. (15) is 𝜌𝑖,𝜔
+ = 0, then a transfer is not 

made and we add 𝐹𝐶𝜔,𝑓′ to the close set.  

Step 3: Add the Cluster from the Far Set to the Close Set  

If no transfer is performed, then 𝐹𝐶𝜔,𝑓′ is moved from 𝐹𝑆 to 

𝐶𝑆. We let 𝐹𝐶�̃� = (𝐹𝐶𝜔,1̃, … , 𝐹𝐶𝜔,�̃�) indicate the clusters in 

the order they are added to 𝐶𝑆. The costs of the clusters in 

𝐹𝐶�̃� are denoted as Ψω̃ = (Ψ𝜔,1̃, . . , Ψ𝜔,�̃�). The objective in 

iterating between steps 2 and 3 is to minimize Ψω̃: 

minimize
𝜌𝑖,𝜔,𝑓,∀𝑖∈[1,𝐼]

 Ψω̃ , (16) 

where (Ψ𝜔,1
′̃ , . . , Ψ𝜔,𝐹

′̃ ) < (Ψ𝜔,1̃, . . , Ψ𝜔,�̃�) 𝑖𝑓 ∃𝑓 ∈ [1, 𝐹] 

  𝑠. 𝑡. Ψ𝜔,𝑓
′̃ < Ψ𝜔,�̃� , Ψ𝜔,𝑓′

′̃ = Ψ𝜔,𝑓′∀𝑓′ ∈ [1, 𝑓 − 1]. 

Namely, an improvement is only made if, on the next iteration 

of the maximization step, the cluster with reduced duration 

will be considered for an action transfer before the cluster with 

increased duration. Note that the sequence 𝐹𝐶�̃� only changes 

if a cluster transfers all ownership over its action a�̃� closest to 

𝐶𝑆. Therefore, the constraints in Eq. (15) of step 2 ensure all 

transfers result in a decrease of Ψω̃. Over several iterations of 

the EM, this approach will decrease the highest cluster cost 

while minimizing the increased cost incurred by other clusters. 

The attempt of transferring ownership is repeated until a 

transfer is made or the far set is empty. In the former case, we 

update 𝐹𝐶𝜔 accordingly and repeat the expectation step, as 

explained above in Section IV.E.1.b. In the latter case, we 

assign robots to clusters, as discussed in Section IV.E.1.d. If 

the robots are already assigned, we add the highest cost cluster 

to the proposed team plan, detailed below in Section IV.E.1.e. 

d. Assign Robots  

After the EM steps are completed, robots are assigned to the 

clusters by solving the linear bottleneck assignment problem 

(LBAP) [34]. The objective of the LBAP is to determine the 

optimal complete bipartite matching (CBM) which minimizes 

the maximum cluster cost, Eq. (11). A CBM is a matching 

which assigns exactly one robot to each cluster. 

To find the optimal CBM we consider a subset 𝕊𝜔(𝑊𝑀𝑎𝑥) 

of all robot-cluster pairs, ℝ × 𝐹𝐶𝜔, with a cost less than 𝑊𝑀𝑎𝑥 . 

The cost of a robot-cluster pair for robot ℝ𝑏 and cluster 𝐹𝐶𝜔,𝑓 

is determined by solving 𝑇𝑆𝑃2 for 𝐹𝐶𝜔,𝑓 with ℝ𝜔,𝑓 = ℝ𝑏. If 

𝕊𝜔(𝑊𝑀𝑎𝑥) contains a CBM, a feasible plan can be formed 

from the pairs in 𝕊𝜔(𝑊𝑀𝑎𝑥) as each robot can be uniquely 

assigned to each cluster. To determine if 𝕊𝜔(𝑊𝑀𝑎𝑥) contains a 

CBM, a maximum bipartite matching (MBM) is solved using 

the Hopcroft-Karp algorithm [35] to determine the maximum 

number of robots that can be uniquely assigned to a cluster.  

To determine the optimal cost for 𝑊𝑀𝑎𝑥 , we initialize 𝑊𝑀𝑎𝑥  

to the median cost of all robot-cluster pairs and perform a 

binary search where the allowable costs for 𝑊𝑀𝑎𝑥  are the costs 

of any of the robot-cluster pairs. We select the minimum 𝑊𝑀𝑎𝑥  

with subset 𝕊𝜔(𝑊𝑀𝑎𝑥) that can form a CBM. The robot-

cluster pair with cost equal to the minimum 𝑊𝑀𝑎𝑥  is the robot-

cluster pair that minimizes the maximum cluster cost. 

Therefore, the robot-cluster pair is the optimal assignment. 

This robot-cluster assignment is selected and held constant, and 

the LBAP is solved with the remaining robots and clusters to 

minimize the remaining cluster costs.  

Once all robots are assigned to a unique cluster, the EM 

steps are repeated to farther minimize the maximum cluster 

cost. The highest cost cluster is then added to the team plan.  

e. Add the Highest Cost Cluster to the Proposed Team Plan  

The highest cost cluster, 𝐹𝐶𝜔,𝑓 = 𝐹𝐶𝑓
̅̅ ̅̅ ̅, is added to the team 

plan by assigning the cluster’s actions to robot search plan 

𝑆𝑃𝜔
(𝑏)

, where ℝ𝑏 = ℝ𝜔,𝑓. Namely, we solve 𝑇𝑆𝑃2 using 𝐹𝐶𝜔,𝑓 

Far Set Empty 

If Transfer Fails 
Far Set Not 

Empty 

Clusters before Maximization 

Clusters after Maximization 

If  

Transfer  

Succeeds 
Add the Cluster from Far Set 

to Close Set 

Transfer Action Ownership from 

Close Set to Far Set 

Create Close and Far Sets of 

Clusters  
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to generate cluster plan 𝐶𝑃𝜔,𝑓 and then set 𝑆𝑃𝜔
(𝑏)

= 𝐶𝑃𝜔,𝑓.  

To assign the remaining robot plans, we remove ℝ𝑏 from the 

list of robots and subtract the region search times in 𝑆𝑃𝜔
(𝑏)

 from 

the region search times in 𝑈𝐴𝜔, then continue the allocation 

from the expectation step in Fig. 4 with robots assigned. 

Once 𝐵 search plans are added to the proposed team plan it 

is complete and we check if it is the best team plan.  

f.  Check Proposed Team Plan is the Best Team Plan  

If planning time remains after generating a proposed 𝑇𝑃𝜔 for 

each time period 𝑇𝜔 sequentially, the search action allocation 

process is repeated to propose an alternative team plan. If no 

planning time remains, 𝑇𝑃 is generated by selecting the 

proposed 𝑇𝑃𝜔 in each time period with minimum time for the 

longest robot search plan, as per Eq. (10). 𝑇𝑃 is the output of 

the Action Allocation to Robots module in Fig. 2. 

F. Iterate if Infeasible Team Plan 

As the team search action selection for 𝑈𝐴 occurs separately 

from the action allocation which generates 𝑇𝑃, the feasibility 

of 𝑇𝑃 must be verified. For 𝑇𝑃 to be feasible, it must satisfy 

the constraint in Eq. (3). Namely, the plan for each robot in 

each time period, 𝑆𝑃𝜔
(𝑏)

, must be completed within the allotted 

time 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. If 𝑇𝑃 is not feasible, both the team search action 

selection and action allocation to robots, Fig. 2, are repeated 

with the estimated travel time 𝑡𝑚𝑜𝑣𝑒 increased by 𝑡𝑢𝑛𝑖𝑡. 

At each iteration, 𝑇𝑃 is modified by truncating all actions 

that cannot be executed within the allotted time 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. For 

example, if 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠 and the plan for ℝ1 takes 990𝑠, 

with the last action taking 180𝑠, then this action would be 

truncated to 90𝑠. Of all the truncated plans, the one which 

minimizes the objective in Eq. (3) is executed by the robots.  

G. Plan Execution 

For the team plan to be executed, each robot performs the 

actions specified in their respective search plans. Namely, 

robot ℝ𝑏 starts in region 𝑅0
(𝑏)

 and performs search plans 

𝑆𝑃1
(𝑏)

, … , 𝑆𝑃Ω
(𝑏)

 sequentially. When ℝ𝑏 performs search action 

𝑎𝜔,ℎ
(𝑏)

 it travels to 𝑅𝜔,ℎ
(𝑏)

 and then spends 𝑡𝜔,ℎ
(𝑏)

 to search 𝑅𝜔,ℎ
(𝑏)

 

during 𝑇𝜔. If the robot arrives at 𝑅𝜔,ℎ
(𝑏)

 before the start of 𝑇𝜔, it 

waits for the start of 𝑇𝜔 before searching. To determine how to 

search within a region, each robot follows the local grid-based 

search planner discussed in Supplementary Material D. During 

the search, if a target user is found, replanning occurs to 

generate a new team plan for finding the remaining users. 

H. Replanning 

The replanning repeats the planning approach in Fig. 2, with 

the following modifications. First, to account for all actions 

executed by the robots prior to replanning, the reward for the 

edges in the min-flow graphs in Eq. (9) are updated when 

generating 𝑈𝐴 to account for the already completed actions: 

 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔

∗ )
𝑖,𝜔 ) = − ∑ 𝑃 (⋃ 𝜃

𝑧,𝑖

𝑇𝐴
𝑖,𝜔′ω

𝜔′=1 )𝑍
𝑧=1  (17) 

 + ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝑇𝐴
𝑖,𝜔′ω−1

𝜔′=1 )𝑍
𝑧=1 + ∑ 𝑃 (𝜃

𝑧,𝑖

𝐸𝐴𝑖,𝜔)𝑍
𝑧=1 , 

where 𝑇𝐴𝑖,𝜔′  is a set of actions that combine the newly planned 

action 𝑈𝐴𝑖,𝜔′  and the actions already executed prior to 

replanning 𝐸𝐴𝑖,𝜔′ . As such, the team search times 𝑡𝑞(𝑎𝑖,𝜔
∗ ) in 

𝑇𝐴𝑖,𝜔′  are equal to the sum of the team search times 𝑡(𝑎𝑖,𝜔
∗ ) in 

𝑈𝐴𝑖,𝜔′  and 𝑞(𝑎𝑖,𝜔
∗ ) in 𝐸𝐴𝑖,𝜔′ , i.e., 𝑡𝑞(𝑎𝑖,𝜔

∗ ) = 𝑡(𝑎𝑖,𝜔
∗ ) +

𝑞(𝑎𝑖,𝜔
∗ ). The time constraint in Eq. (3) is also updated to 

account for the time already expended in each time period:  

 𝑡(𝑆𝑃𝜔
(𝑏)

) ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑄𝜔 , ∀𝑆𝑃𝜔
(𝑏)

∈ 𝑇𝑃, (18) 

where 𝑄𝜔 is the time spent during 𝑇𝜔 prior to replanning.  

 The time and space complexity for the proposed team action 

selection and action allocation approaches, and the overall 2-

MRPSS method are provided in Supplementary Material E. 

V. IMPLEMENTATION SCENARIOS 

We have tested our 2-MRPSS in various multi-robot search 

scenarios. One application of interest is deploying multiple 

robots in long-term care homes to find multiple dynamic 

elderly residents in order for the robots to engage in social 

human-robot interaction with them. The increasingly high 

number of long-term care residents relative to care staff can 

result in staff burnout [36]. Therefore, robots can assist staff by 

providing residents with reminders of upcoming activities [20], 

teleconferencing with family and friends [21], and facilitation 

of recreational activities [37]. To provide such assistance, the 

robots must first find the residents within the environments.  

Our 2-MRPSS approach for finding residents in long-term 

care considers the locations in which the residents perform 

various activities of daily living including eating, meeting with 

family and friends, watching television, reading, and taking a 

nap. Some activities are performed in a resident’s own private 

room such as taking a nap. The private rooms are not accessed 

by other residents. Other activities are performed in shared 

rooms such as eating in the dining hall, watching television in 

the recreational room, reading in the garden, and meeting with 

family and friends in the lobby. The shared rooms are accessed 

by all residents. Some rooms are off-limits to the residents such 

as the kitchen and robot charging station while some are off-

limits to the robots such as the nurses’ station. 

Environment Layouts: The environment layouts considered 

are informed by our long-term care partners. They consist of 26 

private rooms, one for each resident, and several shared rooms. 

The number of shared rooms ranges from 4 to 16. The total 

number of all types of rooms is 30, 33, 36, 39, and 42 rooms. 

The rooms are represented by regions and divided into cells, 

with the largest regions containing 20 cells, resulting in 𝑡𝑚𝑎𝑥 =

440𝑠, as 𝑡𝑐𝑒𝑙𝑙 = 22s is required for a robot to search each 

cell. 𝑡𝑢𝑛𝑖𝑡 was set equal to 𝑡𝑐𝑒𝑙𝑙 , and 𝑡𝑚𝑜𝑣𝑒 was initialized to 0. 

An example environment layout is in Fig. 6, with shared room 

and private room configurations as in Fig. 7. 

Target Users: A subset of residents was selected to be found 

by all robots. During each search, the dynamic residents visited 

various regions, sometimes visiting a region more than once. 

The number of target users was 1, 5, 10, 15, and 20 residents. 

Time Frame: The searches occurred between 10:00am and 

6:00pm, with a search duration of 15, 30, 45, 60, or 75 minutes. 
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Time Period: Each search used Ω = 3 time periods. 

Robot Team: Multiple robots executed each team plan. The 

robots moved at a speed of 0.8m/s. When searching a cell, 

each robot was able to identify any resident in the cell. The 

number of robots used were 1, 3, 5, 7, and 9 robots. 

Planning Duration: Each search used 𝑡𝑝𝑙𝑎𝑛 = 10ms  

planning duration. 

Dataset: Each search used Y=30 days of simulated data for the 

location models. The data set can be found on our website. 

Search queries: All combinations of the above parameter 

values were considered to test our MRPSS: environment size = 

{30, 33, 36, 39, 42} shared rooms, search duration = {15, 30, 

45, 60, 75} minutes, number of target users = {1, 5, 10, 15, 

20}, and number of robots= {1, 3, 5, 7, 9}. Each combination 

was repeated for a search start time = {10:00, 12:00, 14:00, 

16:00, 18:00} on a 24-hour clock. This resulted in 3,125 trials. 

A representative video of our 2-MRPSS method using a 3-

member robot team to search a 30 room environment for a 15 

minute duration to find 5 target users is presented in here. 
 

 
Fig. 6. Environment layout with 30 searchable rooms. Shared rooms (blue) 

include: lobby (L) and recreational room (RR) - 8m x 8m; and dining room 

(DR) and garden (G) - 8m x 10m. Private rooms (green) are represented by P - 

4m x 4m. Unsearchable rooms (red) include: kitchen (K) - 4m x 8m; and 

charging station (CS) and nurses’ station (NR) - 4m x 4m. 
 

   
 (a)  (b) 

Fig. 7.  Example layout of rooms: (a) shared garden, and (b) private room. 

VI. SEARCH EXPERIMENTS 

We conducted simulated experiments for our long-term care 

implementation problem to investigate the performance of our 

proposed method with respect to: 1) the team plan duration of 

our action allocation to robots, and 2) the number of target 

users found using our overall 2-MRPSS. 

A. Experiment #1: Team Plan Duration Time 

The purpose of the Action Allocation to Robots module 

discussed in Section IV.E is to solve the min-max mRSP in 

order to allocate a set of unallocated actions (𝑈𝐴) such that the 

overall team plan duration is minimized. To generate 𝑈𝐴, as 

discussed in Section IV.D, we must select parameter 𝑡𝑚𝑜𝑣𝑒 to 

estimate the robot travel time between regions by considering 

the impact of 𝑡𝑚𝑜𝑣𝑒 on 𝑈𝐴. Namely, we note that a larger 

𝑡𝑚𝑜𝑣𝑒 results in fewer actions in 𝑈𝐴 and that it is easier to 

optimally allocate a small number of actions due to the small 

number of permutations. As the number of actions increases, 

the number of permutations, and thus complexity of the 

allocation problem, also increases. Therefore, we have 

selected 𝑡𝑚𝑜𝑣𝑒 = 0, as the resulting 𝑈𝐴 from solving the 

CMPMKP will have a large number of actions. This allows us 

to test the capabilities of our clustering-based action allocator 

in a hard, high complexity instance of the allocation problem. 

Note that the solution to the min-max mRSP is a team plan 

for a single time period, and the overall team plan is generated 

by sequentially solving the min-max mRSP in each time 

period. Thus, we consider the amount of time it takes the team 

to perform the plan in each time period, 𝑡(𝑇𝑃𝜔), determined 

by the longest robot search plan in that time period: 

 𝑡(𝑇𝑃𝜔) = max
𝑏∈[1,𝐵]

𝑡(𝑆𝑃𝜔
𝑏). (19) 

The mean team plan duration for a single search is the average 

of 𝑡(𝑇𝑃𝜔), ∀𝜔 ∈ [1, Ω]. To avoid biasing the results towards 

scenarios with longer search durations, which will have longer 

team plan durations, we introduce the mean maximum search 

time (MMST). The MMST considers the average 𝑡(𝑇𝑃𝜔) as a 

percentage of the search time in a time period: 

 MMST =
∑ 𝑡(𝑇𝑃𝜔)Ω

𝜔=1

Ω𝑡𝑝𝑒𝑟𝑖𝑜𝑑 . (20) 

As we used 𝑡𝑚𝑜𝑣𝑒 = 0, an expected underestimate of the 

travel time, all values of MMST will be above 100%. 

Herein, we determine and compare the MMST of our 

clustering method for action allocation against three potential 

alternatives methods: 1) naïve [21], 2) random, and 3) 

memetic [38]. The details of these alternative methods are 

presented in the Supplementary Material F. We also provided a 

validation study in the Supplementary Material G for the 

selected planning duration of 𝑡𝑝𝑙𝑎𝑛 = 10ms to demonstrate 

how all four allocation methods gain no additional 

performance benefits from a planning duration above 10ms. 

1) Results 

 The MMST across various environment sizes, search 

durations, number of target users, and number of robots for 

our comparison are presented in Fig. 8. Each point represents 

  (a)  (b) (c) (d) 

Fig. 8.  Mean maximum search time across (a) environment size, (b) search duration, (c) number of target user, and (d) number of robots. 

  

http://asblab.mie.utoronto.ca/research-areas/person-search-human-centered-environments
https://www.youtube.com/watch?v=hsF0qriqFMU
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the mean of 625 trials. Results show that our clustering action 

allocator outperformed the alternative allocators across all 

scenarios with the exceptions of a 15 minute search duration, 

where it was comparable with the memetic method, and a 

single robot search, where all methods performed the same. 

 For all combination of scenarios, 3,125 trials, the MMST 

was 193% for our clustering method, 200% for the memetic, 

234% for the naive, and 248% for the random methods. 

Namely, the team plans generated by our clustering approach 

were at least 7% faster than the alternatives. In general, our 

clustering approach had a statistically lower mean maximum 

search time than the alternatives as it: 1) considered all robot 

locations simultaneously, and 2) had multiple robots cooperate 

in searching a single region. As the naïve and random methods 

considered each robot sequentially, they had inefficient travel 

times. Although the memetic method did not have travel time 

inefficiencies, the inability to assign multiple robots to a single 

region resulted in an unbalanced workload. For example, in 

one scenario, the memetic approach assigned all the cells in 

both RR and DR to a single robot resulting in a long team plan 

duration of 1,803s. For this scenario, our clustering approach 

assigned another robot to assist in searching RR, resulting in a 

shorter overall team plan duration of 1,618s. 

 A non-parametric Kruskal-Wallis test (𝛼=0.05) conducted 

for all 3,125 trials found that there was a statistically 

significant difference in the MMST between the four action 

allocators, 𝜒2(3) = 921, 𝑝 < 0.0001. A post-hoc Dunn’s test 

(𝛼=0.05) with a Bonferroni correction (𝛼=0.0167) showed a 

statistically significant difference between the clustering and 

the alternatives: naïve allocators (𝑍(3125) = 17.7, 𝑝 <
0.0001), the random allocators (𝑍(3125) = 27.2, 𝑝 <
0.0001), and the memetic (𝑍(3125) = 4.70, 𝑝 < 0.0001).  

B. Experiment #2: Number of Users Found  

We investigated the mean success rate of finding target 

users using our proposed aware 2-MRPSS with strong 

coordination to solve the multi-robot search problem within a 

deadline. To the authors’ knowledge there are currently no 

existing approaches for solving this specific multi-robot search 

problem. However, we were able to adapt both the segmented 

(unaware with no coordination) [14] and sequential (aware 

with weak coordination) [22] planners from the literature by 

combining them with our two-stage approach of first selecting 

team search actions and then generating robot plans. The 

segmented planner assigns a unique area for each robot to 

search, while the sequential planner generates a plan 

sequentially for each robot. We compared our 2-MRPSS 

approach to these methods in order to investigate the effect 

that strong coordination has on maximizing the number of 

dynamic users found within a deadline. The development 

details of both these planners are in Supplementary Material H. 

1) Results 

The mean success rates for all three methods across various 

environment sizes, search durations, number of target users, 

and number of robots are presented in Fig. 9. Each point 

represents the mean of 625 trials. The results show that our 2-

MRPSS approach outperformed the alternatives with the 

exceptions of a 15 minute search duration, one target user, and 

one robot. For these latter scenarios, the plans were all similar 

as the majority of cases had only one action per robot or all 

actions were assigned to a single robot. 

The overall mean success rates across all scenarios (3,125 

trials) in Fig. 9 is 61% for both the segmented and sequential 

approaches, and 72% for our 2-MRPSS approach. Namely, 

our approach searched several high probability locations 

within the search duration, while the segmented approach 

generally had at least one robot assigned to a search area with 

low user probability and the sequential approach required 

robots planning later in the process to accommodate existing 

plans. For example, in a scenario with 3 robots searching for 

15 users, our 2-MRPSS approach assigned the team to search 

4 shared rooms as these had the highest user probabilities, 

resulting in 13 users being found. However, in the segmented 

approach, 2 robots searched 2 shared rooms where they found 

8 users, and the third robot searched 4 private rooms where no 

users were found. In the sequential approach, 2 robots 

searched 2 shared rooms and a portion of another shared room. 

Therefore, the third robot searched the remainder of the shared 

room as well as 2 nearby private rooms in order to have 

enough time to travel between rooms. 10 users were found in 

the shared rooms and none in the private rooms. 

A Kruskal-Wallis test (𝛼 = 0.05) showed a statistically 

significant difference between the overall means, 𝜒2(3) =
118, 𝑝 < 0.0001. A post-hoc Dunn’s test (𝛼=0.05) with a 

Bonferroni correction (𝛼=0.025) determined statistically 

significant differences between our 2-MRPSS approach and 

the 1) segmented method, 𝑍(3125) = 9.07, 𝑝 < 0.0001, and 

2) sequential method, 𝑍(3125) = 9.69, 𝑝 < 0.0001.  

VII. CONCLUSIONS  

In this paper, we present a novel multi-robot person search 

system for finding multiple dynamic users before a deadline in 

human-centered environments considering user data. Our 

aware 2-MRPSS approach with strong coordination 

simultaneously considers all robot locations as well as user 

location probability density functions when generating a team 

plan. This allows our approach to minimize the team plan 

duration such that it can search high probability user locations 

  (a)  (b) (c) (d) 
Fig. 9. Mean success rate across (a) environment size, (b) search duration, (c) number of target user, and (d) number of robots. 
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within the deadline. Comparison experiments validate that our 

approach has a lower mean maximum search time and is able 

to find more targets before a deadline when compared to other 

alternative methods. Our future work will consist of 1) 

incorporating online evidence, similar to [19] within the user 

location model from direct robot observations as they search 

the environment, and 2) integrating our 2-MRPSS method 

within a multi-robot control architecture with complementary 

perception and human-robot interaction modules for deploying 

a team of physical robots in partner long-term care centers. 
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