

1

Abstract— Multi-robot coordination for finding multiple users

in an environment can be used in numerous robotic applications

including search and rescue, surveillance/monitoring, and

activities of daily living assistance. Existing approaches have

limited coordination between robots when generating team plans

or do not consider user location probability within these plans.

This results in long searches and robots potentially revisiting the

same locations in succession. In this paper, we present a novel

multi-robot person search system to generate search plans for

multi-robot teams to find multiple dynamic users before a

deadline. Our approach is unique in that it simultaneously

considers the search actions of all robots and user location

probabilities when generating team plans, where user location

probabilities are represented as conditional spatial-temporal

probability density functions. We model this multi-robot person

search problem as a two-stage optimization problem to maximize

the expected number of users found before the deadline. Stage 1

solves the action selection problem to determine a set of team

actions, and the second stage solves the action allocation problem

to distribute these actions amongst the robots. Namely, in stage 1,

a novel conditional multi-period multi-knapsack problem is

modeled as a min-flow graph solved sequentially by the Bellman-

Ford shortest path algorithm. Stage 2 is a variant of the min-max

multi-traveling salesperson problem which models the

environment topology as a search region network and search

times selected by the previous stage. This stage is solved by a

novel fuzzy clustering method. Numerous experiments

comparing our proposed method to other existing approaches

with varying environment sizes, search durations, and number of

users showed that our approach was able to find more target

users before a defined deadline.

Index Terms— Multi-Robot Coordination, Multiple Dynamic

People, Search Within a Deadline, Multi-Period Multi-Knapsack

Problem, Min-Max Multi-Traveling Salesperson Problem.

I. INTRODUCTION

OBOTS need to search for people in various environments

in order to provide assistance. Examples include

Manuscript received July 16, 2021; revised Sept 17, 2021; accepted March 28,

2022. This work was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC) and NSERC CREATE HeRO

fellowship, the Ontario Centres of Excellence (OCE), AGE-WELL Inc., and

the Canada Research Chairs program (CRC).

The authors are with the Autonomous Systems and Biomechatronics
Laboratory, Department of Mechanical and Industrial Engineering, University

of Toronto, Toronto M5S3G8 ON, Canada (e-mail: {sharaf.mohamed,

angus.fung}@mail.utoronto.ca; nejat@mie.utoronto.ca).
Digital Object Identifier (DOI): see top of this page.

discovering victims in disaster scenes [1]–[8]; finding lost

persons in the wilderness [9]–[12]; surveilling urban areas

[13]–[17]; and locating users in homes/offices to assist with

daily tasks [18]–[22]. These searches are conducted by either a

single robot [1], [10], [18]–[21] or a team of robots [2]–[7],

[9], [11]–[17], [22]. The single robot search problem has been

extensively studied, however, the number of search targets and

search environment size are often too large for a single robot

to find the users within a timeframe. This may result in loss of

life, personal or property damage, or failure to provide

assistance. For example, finding residents in long-term care,

patients and staff in hospitals, employees in an office or

victims trapped in a building; example scenarios presented in

Fig. 1. Hence, there is a need to deploy multiple robots.

 (a) (b) (c)
Fig. 1. Examples of typical scenarios of a floor in a: (a) long-term care home,

(b) hospital, and (c) office building. Robots are orange and target people are

cyan. Full sized images are included in the Supplementary Material A.

A number of existing multi-robot person search techniques

have considered robots that plan independently, where

individual robots do not consider other robots in their plans

[9], [12], [14]. As plans are independent, multiple robots may

end up searching: 1) the same location in close succession,

even when it is unlikely for a search target to move to that

location between these searches [9], [12], or 2) locations with

low probabilities of containing a search target if robots are

assigned to unique regions within the environment [14].

In contrast to planning independently, team coordination

allows robots to be distributed within an environment visiting

multiple locations with a high probability of containing a user.

Coordination can either be weak or strong. Weak coordination

planners have limited team coordination, as a robot only

considers other robot actions in later stages of the planning

process [6], [7], [9], [11], [15]–[17], [22]. To accommodate

A Multi-Robot Person Search System for

Finding Multiple Dynamic Users in Human-

Centered Environments

Sharaf C. Mohamed, Angus Fung, and Goldie Nejat, Member, IEEE

R

Target User

Target User

Target User

Robot

Robot

Robot

Robot

Robot

Robot

Robot

Robot

Target User

Target User

Target User

Target User

Target User

Target User

Target User

Robot

Robot

Robot

Robot

Target User

Robot

Target User

Robot

Robot

Target User

Target User

IEEE Transactions on Cybernetics. This is the author’s version of an article that has been published. Changes were made

to this version by the publisher prior to publication. (https://doi.org/10.1109/TCYB.2022.3166481)

mailto:nejat@mie.utoronto.ca
https://doi.org/10.1109/TCYB.2022.3166481

2

actions selected earlier in the process, the actions selected later

are often restricted to either searching a location with a low

user probability or incurring a large travel time.

Strong coordination approaches simultaneously consider all

robots when planning [2]–[5], [13]. They reason about the

environment layout but do not consider user location

information in planning. Therefore, these approaches focus on

optimizing the search for the entire environment (i.e.,

coverage). Many robotic search applications require a search

deadline to ensure completion of the tasks at hand, including

locating multiple passengers in airports to guide them to their

gates [23]; finding survivors within a collapsed building [24];

and locating people in a multi-room environment to provide

them with items, information, or reminders [18]–[20].

In our research, we consider robot search problems in

human-centered environments that have a deadline and can

benefit from prior user location probabilities. For example, our

previous work solved the single robot search problem by

uniquely predicting user locations conditioned on previous

robot search actions [21]. Herein, we introduce a new problem

requiring multiple robots to maximize the number of users

found given the conditional spatial-temporal user location

probabilities. Namely, we present a novel two-stage multi-

robot person search system (2-MRPSS) for generating

strongly coordinated search plans for a team of robots to

maximize the expected number of dynamic users found within

a deadline. Our approach uniquely generates team search plans

that simultaneously consider the search actions of all robots

and user location probabilities. We represent the search

problem as a two-stage optimization problem, as there are no

existing one-stage methods to solve this unique problem that

requires a large solution space. First, we select team actions

that maximize the number of users found by uniquely

formulating and solving our novel conditional multi-period

multi-knapsack problem (CMPKP). Then, we distribute the

team actions amongst the robots to minimize the longest

duration robot search plan by solving our novel min-max

multi-robot search problem (min-max mRSP).

II. RELATED WORK

Herein, we discuss existing multi-robot person search

systems (MRPSS) with real-world robotics considerations. We

adapt the taxonomy presented in [25] for multi-robot systems

(MRS): 1) cooperation (cooperative or non-cooperative), 2)

knowledge (aware or unaware of other robots), 3) coordination

(strong, weak, or none), and 4) organization (distributed,

weakly centralized, or strongly centralized).

MRPSS is a unique subset of MRS, where multiple robots

search an environment for people. In general, the majority of

existing MRPSS are strongly centralized, with only a handful

of distributed approaches. When generating search plans,

knowledge and coordination types are important to select

robot search locations and times. MRPSS can be classified as

follows: 1) unaware with no coordination [9], [12], [14], 2)

aware with weak coordination [6], [7], [11], [15]–[17], [22],

and 3) aware with strong coordination [2]–[5], [13].

A. Unaware Robot Searches with No Coordination

Unaware robot searches have no coordination between the

robots. For example, in [9], UAVs searched for a single victim

of a marine disaster using distress signals from victims’ last

known locations. They were distributed in the environment,

and each UAV searched the location which maximized the

probability of victim detection per unit of distance traveled.

Simulated experiments showed UAV paths would cross

frequently and converge causing redundant search actions.

In [12], a robot team searched for a moving victim lost in

the wilderness. The victim’s location was modeled using iso-

probability curves which propagated outward from their last

known location. Each robot searched along a unique curve as

dictated by a central server. In [14], a team of stationary

sentinels and UAVs detected trespassers in an outdoor urban

environment. The environment was discretized into cells with

equal arrival probability of a trespasser and a loss incurred per

unit of time a trespasser was present. Upon sentinel detection

of an intruder, a UAV searched within the area using a

minimum time coverage approach. Simulated experiments

showed performance deterioration for non-uniform loss

functions as the sentinel areas had uneven workloads.

B. Aware Robot Searches with Weak Coordination

Weak coordination methods consider robots that are aware

of each other’s locations, but plan individually [25]. In [16],

multiple UAVs were used for surveilling crime-prone areas.

The environment was divided into grids with spatial-temporal

incident probabilities. Scores were assigned based on when a

grid was last searched and its incident detection history. Weak

coordination was achieved by sequentially assigning robots to

maximum goal locations and reducing the scores of grids

within the vicinity. Simulation results showed that using

incident detection history improved coverage. However,

sequentially assigning robots may result in uneven workloads

with some robots travelling large distances.

In [6], a team of UAVs patrolled an urban environment

damaged by a disaster to provide assistance such as rescuing

victims. Each UAV was assigned a patrolling area with little

overlap between the areas. A Monte Carlo look-ahead tree was

built independently by each UAV to solve a POMDP. Based

on the joint set of trees, the team selected the joint set of

actions which maximized information gain without any UAV

exceeding a maximum damage threshold incurred from the

disaster. Simulated results showed the approach outperformed

randomly selecting actions, however, the limited amount of

overlap between the patrolling areas led to uneven workloads.

In [17], a team of robots searched for unknown dynamic

people. Target motion was modeled using Gaussian processes.

A robot trajectory was obtained by either maximizing the

expected number of detections (END) or maximizing the

mutual information (MI) between target locations and

measurements over a fixed horizon. Team trajectories were

then selected using a greedy method with individual robot

trajectories optimized sequentially and conditioned on the

actions of previous robots. Simulations, conducted in a

downtown city area, showed that the END objective tracked a

3

higher number of targets compared to the MI objective.

However, generating robot trajectories sequentially, may

result in suboptimal plans as the reduced solution space means

the solutions will be more tractable but less optimal.

In [22], two weakly coordinated multi-robot approaches for

social robots were proposed for searching and tracking a

single person in urban environments to assist them using

reinforcement learning or a particle filter. Both methods

maintained and updated the belief of the person’s location.

Each robot planned independently using a 1-step lookahead

that selected the next goal location based on a person location

probability map and the robots’ combined observations.

Results showed that the particle filter method was able to get

robots closer to the person’s real position. The robots

performed better when they communicated with each other.

In [11], a team of UAVs searched for lost persons in the

wilderness. A victim’s location was modeled using iso-

probability curves, which propagated outwards from their last

known location. Each robot was assigned to search along an

iso-probability curve. Weak coordination was achieved via a

post-hoc step of assigning UAVs to non-intersecting sections

of the iso-probability curves to remove redundant actions.

These assignments were limited to the previously assigned

iso-probability curves. Simulation results showed that the

proposed method found more people than coverage methods.

In [7], a multi-robot approach was proposed for search and

delivery of medical supply tasks to victims. The tasks were

allocated using the Hungarian method to minimize the time

required to attend to all victims. The disaster area was

partitioned into Voronoi cells with each cell assigned to a

robot. A frontier-based exploration method was used to track

the centroid of the Voronoi cell. 2D simulations showed that

the approach was able to complete a mission scenario.

However, partitioning the environment to be uniquely

assigned to each robot may lead to uneven workloads.

C. Aware Robot Searches with Strong Coordination

Strong coordination approaches concurrently generate all

plans for the aware robots [2]–[5], [13]. In [2], robots searched

for static victims in an unknown damaged building. The team

plan was based on multi-robot graph traversal algorithms such

as breadth-first search (BFS) and abortable Dijkstra’s

algorithm with Hungarian method (ADAHM). Simulated

experiments showed that BFS found the victims the fastest for

the large and small environments, and the ADAHM was the

fastest in medium environments which had fewer paths

between regions. In [3], a team of semi-autonomous robots

and human operators searched an unknown disaster scene for

trapped static victims. A MAXQ hierarchical controller

assigned robots to subscenes, determined when robots should

perform victim identification, and when an operator needed to

intervene. Simulated experiments showed the robots found

99% of victims with an average coverage of 93.4%.

In [4], a team of robots searched a damaged building for

stationary survivors. The team consisted of robots for finding

survivor locations without prior information, and robots for

rescuing survivors. Robot plans were arbitrarily generated

such that a unique robot was assigned to each survivor

location. Then, the plans were optimized by exhaustively

removing a location from a plan if adding it to another plan

would decrease the time to perform the action. In [5], the

aforementioned approach was modified to remove locations

from a robot plan if another robot could search the location

before the victim’s condition was critical and removing that

location would allow the robot to search a currently

unsearched location. Simulations showed the modification

increased the number of victims rescued.

In [13], a robot team performed graph clearing to pursue

adversarial attackers. Namely, the team searched the

environment to find existing attackers while also stopping

future attackers from entering the searched environment.

Graph clearing used frontier exploration where robots were

either guards or followers. The frontiers were contained within

the joint field of view of the guards. As the frontier expanded,

the followers were added to the set of guards to maintain the

required field of view. Simulated experiments demonstrated

six robots could clear a hospital wing with seventeen regions.

D. Summary and Challenges

The unaware MRPSS with no coordination consisted of

robots in a team having independent search plans which result

in suboptimal use of resources. For example, robots may

search a location repeatedly without considering the

probability of the targets moving to that location between the

searches [9], [12] or the workload may be unevenly distributed

between robots [14]. Both cases can result in robots being

allocated to locations with a low user probability.

Aware MRPSS with weak coordination consisted of 1)

assigning robots to areas of the environment with minimal

overlap [6], [7], 2) selecting a combination of independently

generated plans [15], 3) generating robot plans sequentially

[16], [17], [22], or 4) performing a post-hoc step on

independent plans to remove redundant actions [11]. Similar

to the unaware case, uneven workload may result between the

robots and combining independent plans without considering

the compatibility between the plans may also result in

redundant actions. While the sequential and post-hoc

coordination approaches reduce uneven workload and

redundancy, actions selected later in the planning process must

accommodate for actions already assigned. As a result, a later

action is often restricted to either searching a nearby low

probability location or incurring a large travel time to search a

faraway high probability location.

Aware MRPSS with strong coordination simultaneously

generate plans for the entire team [2]–[5], [13]. These

coverage and graph clearing problems solve a different

problem than our proposed problem as they require the robots

to minimize the time to explore or clear an environment, as

opposed to maximizing the number of dynamic users found.

Additionally, the coverage techniques have focused only on

finding static users [2]–[5] and have not yet considered

dynamic users in the environment. Namely, they do not search

regions that have already been searched, but people are

dynamic and can return to already visited regions. The graph

4

clearing approach in [13] focused on assigning robots to block

regions even when there is a low probability that a user may

enter them. Therefore, both the coverage and clearing

approaches plan consider the environment layout to maximize

the number of regions searched, and do not consider user

location probabilities. However, reasoning about user location

probabilities is important as there is no need to search areas

where there is little to no probability of people being there.

We introduce the new problem of multiple robots finding

multiple dynamic users in a human-centered environment

before a deadline. Due to the aforementioned limitations, the

existing methods cannot be directly applied to our novel

problem. Thus, we have developed a novel aware 2-MRPSS

with strong coordination. Our approach reasons about user

location information, represented by conditional spatial-

temporal probability density functions (PDFs) to determine the

expected number of users found by each search action in the

team plan. Therefore, the team search actions have a high

probability of finding the users within the search duration.

III. THE MULTI-ROBOT PERSON SEARCH PROBLEM

The multi-robot person search problem is defined herein as a

team of robots cooperating to search an environment to find

dynamic people within a specified time frame. Examples of

typical scenarios are presented in Fig. 1.

Environment: The environment is an indoor area occupied by

the users daily and consists of a set of regions 𝑅 = {𝑅1, … , 𝑅𝐼},

with a total of 𝐼 regions.

Target Users: The target users 𝑈′ = {𝑈1
′ , … , 𝑈𝑍

′ } are those

who need to be found during the search.

Time Frame, Periods and Windows: The time frame

specifies the start time, 𝑡𝑠𝑡𝑎𝑟𝑡, and end time, 𝑡𝑒𝑛𝑑, of the

search. It is divided into Ω discrete time periods 𝑇 =

(𝑇1, … , 𝑇Ω) of equal length 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. A time window is a

contiguous subset of time periods 𝑇𝑗,𝑘 = (𝑇𝑗 , … , 𝑇𝑘).

Robot Team: The robot team consists of 𝐵 robots ℝ =
{ℝ1, … , ℝ𝐵}. The robots perform search actions, 𝑎𝑖,𝜔,𝑡,

consisting of searching in 𝑅𝑖 during 𝑇𝜔 for a duration of 𝑡. We

discretize the problem by considering durations as a multiple of

𝑡𝑢𝑛𝑖𝑡. 𝑡𝑖
𝑖′

 denotes the time to move between 𝑅𝑖 and 𝑅𝑖′ . At the

start of the search, each robot ℝ𝑏 has an initial region 𝑅0
(𝑏)

.

Planning Duration: The planning duration, 𝑡𝑝𝑙𝑎𝑛, is the

amount of time allotted for generating the team plan.

Search Query: The search query, 𝑆, specifies the target users,

the time frame, the team, and the planning duration.

Team Plan: The team plan, 𝑇𝑃, is generated to maximize the

number of target users found given 𝑆. 𝑇𝑃 specifies a search

plan, 𝑆𝑃𝜔
(𝑏)

, for each robot ℝ𝑏 during each time period 𝑇𝜔

consisting of an ordered set of actions:

 𝑇𝑃 = ({𝑆𝑃1
(1)

, … , 𝑆𝑃1
(𝐵)

}, … , {𝑆𝑃Ω
(1)

, … , 𝑆𝑃Ω
(𝐵)

}), (1a)

 𝑆𝑃𝜔
(𝑏)

= (𝑎𝜔,1
(𝑏)

, … , 𝑎𝜔,𝐻(𝑏)
(𝑏)

), (1b)

where 𝑎𝜔,ℎ
(𝑏)

 denotes the ℎ𝑡ℎ search action of 𝑆𝑃𝜔
(𝑏)

 which

occurs at 𝑅𝜔,ℎ
(𝑏)

 during 𝑇𝜔 for a duration of 𝑡𝜔,ℎ
(𝑏)

. We define

𝑡(𝑆𝑃𝜔
(𝑏)

) as the time required to perform 𝑆𝑃𝜔
(𝑏)

. Multiple robots

can work together to search 𝑅𝑖 during 𝑇𝜔.

Team Action: A team action, 𝑎𝑖,𝜔
∗ , is the culmination of search

actions performed in 𝑅𝑖 during 𝑇𝜔. The time associated with a

team action, 𝑡(𝑎𝑖,𝜔
∗), is determined as the total time of all the

search actions performed in 𝑅𝑖 during 𝑇𝜔:

 𝑡(𝑎𝑖,𝜔
∗) = ∑ (𝑡𝑘,ℎ

(𝑏)
)

a𝑘,ℎ
(b)

∈𝕊𝑖,𝜔
, (2a)

 𝕊𝑖,𝜔 = {a𝑘,ℎ
(b)

|a𝑘,ℎ
(b)

∈ 𝑇𝑃, 𝑅𝑘,ℎ
(𝑏)

= 𝑅𝑖 , 𝑇𝑘 = 𝑇𝜔}. (2b)

A complete list of all the symbols used in this paper is

provided in the Supplementary Material B.

IV. PROPOSED MULTI-ROBOT PERSON SEARCH SYSTEM

Our proposed 2-MRPSS generates a team plan, 𝑇𝑃, that

maximizes the number of target users found within a time

frame, as indicated by the team total reward, 𝑊(𝑇𝑃). Namely,

𝑇𝑃 is generated such that it maximizes 𝑊(𝑇𝑃) without any

robot exceeding the allowable search time in any time period:

maximize
𝑇𝑃

 𝑊(𝑇𝑃), (3)

subject to 𝑡(𝑆𝑃𝜔
(𝑏)

) ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝑆𝑃𝜔
(𝑏)

∈ 𝑇𝑃,

where 𝑡(𝑆𝑃𝜔
(𝑏)

) = ∑ (𝑡𝜔,ℎ
(𝑏)

+ 𝑡
𝑅𝜔,ℎ−1

(𝑏)

𝑅𝜔,ℎ
(𝑏)

)
𝑎𝜔,ℎ

(𝑏)
∈𝑆𝑃𝜔

(𝑏) .

The time spent by a robot 𝑡(𝑆𝑃𝜔
(𝑏)

) is the summation of time

spent both searching and moving to its allocated regions.

A. 2-MRPSS Framework

The problem of generating a team plan is NP-hard, as is

even generating a single robot search plan [21]. Therefore, it is

computationally impractical to solve the entire problem

together due to the large number of possible team plans,

𝐼
(Ω×𝐵×

𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡)
. For example, for a problem size of 𝐼 = 30

regions, Ω = 3 time periods, 𝐵 = 3 robots, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠,

and 𝑡𝑢𝑛𝑖𝑡 = 15𝑠, the total number of possible team plans is

4.4 × 10697. Our 2-MRPSS solves the problem through a two-

stage approach: 1) first selecting team search actions, and 2)

assigning these team actions among the robots to generate a

team plan. As there is no available one-stage approach to solve

our problem, in our two-stage approach, the system may not

know the actual travel time to arrive at a specific region (the

search ordering of these regions is not determined until the

second stage). Instead, a constant travel time is estimated.

However, in a realistic scenario: 1) successive regions are

expected to have low travel times, 2) the estimated travel time

will be close to the actual through iteration, and 3) optimal

solutions will spend more time searching than traveling. Thus,

it is expected that a two-stage approach will have the same

optimal solutions as a hypothetical one-stage approach. In

fact, the exponential reduction in solution space means that for

real-time applications, the quality of a two-stage approach will

be better. The 2-MRPSS framework is presented in Fig. 2.

Prior to the search, user location data is acquired during

several days while the user performs daily activities. This data

is used to determine user location PDFs, representing the

5

probability of a user being in a region 𝑅𝑖 during a time

window 𝑇𝑗,𝑘. Based on the PDFs, rewards for the team actions

are assigned. Then, a set of unallocated team search actions,

𝑈𝐴, is selected to maximize the reward acquired by solving a

new variant of the multi-knapsack problem (mKP) [26], which

we define herein as the conditional multi-period multi-

knapsack problem (CMPMKP). The CMPMKP, stage 1 of our

approach, is modeled by a min-flow graph. In stage 2, the

actions in 𝑈𝐴 are allocated to the robots such that the longest

robot plan in each time period is minimized. For this

allocation, we have developed an extension of the min-max

multi-traveling salesperson problem (min-max mTSP) [27],

which we define as the min-max multi-robot search problem

(min-max mRSP). The min-max mRSP is modeled by a search

region network. If the resulting 𝑇𝑃 is infeasible, i.e., it cannot

be executed within the allotted time, the procedure is iterated

to determine 𝑈𝐴 using a larger travel time estimate. During

the plan execution, if a target user is found, replanning

generates a plan optimized for the remaining target users.

The below subsections present the detailed procedure of our

2-MRPSS framework highlighting our novel contributions.

Fig. 2. 2-MRPSS framework.

B. User Location Model

The user location model is extended from [21] for a team of

robots. Herein, we remove the assumption that the start and

end time of data acquired on the users must align with the start

and end of time periods, and by integrating over the time

periods. We capture the conditional dependence of user

location probabilities in sets of non-contiguous time periods

i.e., a user in 𝑅1 for 𝑇1 and 𝑇3, but not during 𝑇2. The model

formulation is further discussed in Supplementary Material C.

C. Rewards for the Team Actions

The reward for 𝑈𝐴 is denoted as 𝑊(𝑈𝐴) and is based on the

expected number of target users found when executing 𝑈𝐴:

 𝑊(𝑈𝐴) = ∑ 𝑃(𝜃𝑧
𝑈𝐴)𝑍

𝑧=1 , (4)

where 𝑃(𝜃𝑧
𝑈𝐴) is the probability of finding a target user 𝑈𝑧

′

when executing 𝑈𝐴. 𝑃(𝜃𝑧
𝑈𝐴) can be expressed in terms of 𝜃𝑧,𝑖

𝑈𝐴

which indicates the occurrence of finding 𝑈𝑧 in 𝑅𝑖 when

executing 𝑈𝐴. Namely, the probability of finding 𝑈𝑧
′ is equal to

the probability of finding 𝑈𝑧
′ in any region:

 𝑃(𝜃𝑧
𝑈𝐴) = 𝑃(⋃ 𝜃𝑧,𝑖

𝑈𝐴𝐼
𝑖=1). (5)

Combining Eqs. (5) and (6), the reward is:

 𝑊(𝑈𝐴) = ∑ (𝑃(⋃ 𝜃𝑧,𝑖
𝑈𝐴𝐼

𝑖=1))𝑍
𝑧=1 , (6)

and is updated to assume that a user will never be found in two

regions during the full execution of a team plan, and as a result

𝜃𝑧,𝑖
𝑈𝐴 and 𝜃𝑧,𝑖′

𝑈𝐴 ∀𝑖′ ≠ 𝑖 are treated as mutually exclusive,

allowing the union to be computed as a summation:

 𝑊(𝑈𝐴) = ∑ (∑ 𝑃(𝜃𝑧,𝑖
𝑈𝐴)𝐼

𝑖=1)𝑍
𝑧=1 . (7)

The revised reward captures that replanning occurs when a user

is found, creating a new plan optimized for the remaining

users. 𝑃(𝜃𝑧,𝑖
𝑈𝐴) is determined by a local planner that generates a

plan for searching within a specific region given the time to

search the region in all time periods, {𝑡(𝑎𝑖,𝑘
∗)∀𝑘 ∈ [1, 𝜔]}. Our

proposed 2-MRPSS can incorporate any local search planner

that can provide 𝑃(𝜃𝑧,𝑖
𝑈𝐴). This paper presents a multi-robot

multi-period coverage planner that uses a grid-based technique

to generate a team plan to search within a region. The

technique divides the region into cells and assigns each robot a

set of cells to search in each time period. Details of this local

search method are present in the Supplementary Material D.

D. Team Search Action Selection

Based on the rewards for the team actions, a set of search

actions is determined. Selecting the search actions for each

individual robot is infeasible due to the large number of

combinations; e.g., for 𝐼 = 30 regions, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠, 𝐵 = 3

robots, and 𝑡𝑢𝑛𝑖𝑡 = 15𝑠, there is a total of (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡)
IB

=

(
900

15
)

(30)(3)

≈ 1.1 × 10160 combinations of unordered search

plans. Instead, the team search action selection determines the

team actions in 𝑈𝐴 to maximize the total reward acquired:

maximize
𝑡(𝑎𝑖,𝜔

∗)∈𝑈𝐴
 𝑊(𝑈𝐴) = ∑ (∑ 𝑃(𝜃𝑧,𝑖

𝑈𝐴)𝑍
𝑧=1)𝐼

𝑖=1 , (8)

subject to ∑ (𝑡(𝑎𝑖,𝜔
∗) + 𝛾𝑖,𝜔𝑡𝑚𝑜𝑣𝑒)𝐼

𝑖=1 ≤ 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , ∀𝜔 ∈ [1, Ω],

where 𝛾𝑖,𝜔 = {
0, 𝑖𝑓 𝑡(𝑎𝑖,𝜔

∗) = 0

1, 𝑖𝑓 𝑡(𝑎𝑖,𝜔
∗) > 0

, ∀𝜔 ∈ [1, Ω], ∀𝑖 ∈ [1, I].

As 𝑈𝐴 is unordered, the actual travel time required to perform

the set of actions is estimated to be 𝑡𝑚𝑜𝑣𝑒. 𝛾𝑖,𝜔 represents the

occurrence of the team searching 𝑅𝑖 during 𝑇𝜔. 𝑡𝑚𝑜𝑣𝑒 is only

added if the region is searched. 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑 represents the search

time available for the 𝐵 robots in the team to perform all the

selected team search actions 𝑎𝑖,𝜔
∗ in each time period 𝑇𝜔.

Selecting the team search actions allows the team to share

actions as needed between the robots. As the team can share

actions, it is expected that a team plan 𝑇𝑃 can be generated

from 𝑈𝐴 such that each robot completes its search plan in each

time period within the allotted time 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. The iteration step

in Fig. 2 is incorporated to check the feasibility of the team

plan 𝑇𝑃 using Eq. (3), and if the plan is infeasible, 𝑈𝐴 is

replanned with a larger travel time estimate 𝑡𝑚𝑜𝑣𝑒 in Eq. (8).

To optimally solve Eq. (8), we have developed a new

CMPMKP solver extended from the single robot method we

presented in [21]. It uses a min-flow graph to consider a

discrete combination of team search actions given that both

𝑡𝑚𝑜𝑣𝑒 and 𝑡(𝑎𝑖,𝜔
∗) must be multiples of 𝑡𝑢𝑛𝑖𝑡. 𝑡𝑢𝑛𝑖𝑡 is

introduced to reduce the infinite set of continuous actions to a

Action Allocation to Robots (min-max mRSP)

Iterate if

Infeasible

Team Plan

Plan Execution Replan if a Target
User is Found

User Location Data

Rewards for the Team Actions

User Location Model

Execute if Feasible Team Plan

Team Search Action Selection (CMPMKP)

6

finite set of discrete actions. The time elapsed in each time

period, 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑 , is the cumulative maximum allowable search

time for the B robot team. This allows the approach to select a

set of team search actions in which each robot will spend

approximately 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 searching within each time period. For

problems with large search durations, solving the CMPMKP is

time-consuming, and a time-efficient approximation is to solve

the min-flow graph in each time period sequentially [21]. For

the multi-robot search, we use a sequential approach as the

time allotted in each time period, 𝐵𝑡𝑝𝑒𝑟𝑖𝑜𝑑, can be large. There

are Ω min-flow graphs, one for each time period, denoted as

(𝐺1, … , 𝐺Ω). Each graph is solved sequentially starting at 𝐺1.

Fig. 3. Sequential min-flow graph 𝐺ω for the CMPMKP.

The sequentially min-flow graph 𝐺ω used to solve the

CMPMKP is presented in Fig. 3. The y-axis represents a time

elapsed in the time period, 𝑄𝜔 and the x-axis represents a

region 𝑅𝑖. At each node 𝑁𝑄𝜔
𝑖 , a decision is made for how much

time the team will spend searching 𝑅𝑖 in 𝑇𝜔. This considers

that 𝑄𝜔 time has already been allocated to {𝑅1, … , 𝑅𝑖−1} by

𝐺𝜔, and (𝑡(𝑎𝑖,1
∗), … , 𝑡(𝑎𝑖,𝜔−1

∗)) search times have already

been allocated to 𝑅𝑖 in (𝑇1, … , 𝑇𝜔−1) by (𝐺1, … , 𝐺𝜔−1). Each

possible decision at a node is represented by an edge 𝐸𝑡(𝑎𝑖,𝜔
∗)

𝑖

indicating a transition from 𝑁𝑄𝜔
𝑖 to 𝑁𝑄𝜔+𝑡(𝑎𝑖,𝜔

∗)+𝛾𝑖,𝜔𝑡𝑚𝑜𝑣𝑒
𝑖 based

on the selected team search time 𝑡(𝑎𝑖,𝜔
∗).

 Each edge cost, 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔

∗)
𝑖,𝜔), is computed based on the

negative expected number of users found when performing the

action, 𝑈𝐴𝑖,𝜔, corresponding to searching 𝑅𝑖 for time 𝑡(𝑎𝑖,𝜔
∗):

 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔

∗)
𝑖,𝜔) = − ∑ 𝑃 (⋃ 𝜃

𝑧,𝑖

𝑈𝐴
𝑖,𝜔′ω

𝜔′=1)𝑍
𝑧=1

 + ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝑈𝐴
𝑖,𝜔′ω−1

𝜔′=1)𝑍
𝑧=1 . (9)

𝑈𝐴𝜔 denotes the team actions selected during 𝑇𝜔, and is

determined to be the set of actions, {𝑈𝐴1,𝜔, … , 𝑈𝐴𝐼,𝜔} that

form the minimum cost path across 𝐺𝜔 as selected using the

Bellman-Ford algorithm [28]. 𝑈𝐴 is then the union of the

actions in each time period (𝑈𝐴1, … , 𝑈𝐴Ω).

E. Action Allocation to Robots

𝑈𝐴 is used to generate a 𝑇𝑃 that satisfies Eq. (3). Namely,

we allocate the team search actions during each time period

𝑇𝜔, denoted as 𝑈𝐴𝜔, among the robots to generate 𝑇𝑃𝜔, which

minimizes the duration of the longest robot plan during 𝑇𝜔:

min
𝑇𝑃𝜔

max
𝑏

 ∑ (𝑡𝜔,ℎ
(𝑏)

+ 𝑡
𝑅𝜔,ℎ−1

(𝑏)

𝑅𝜔,ℎ
(𝑏)

)
𝑎𝜔,ℎ

(𝑏)
∈𝑇𝑃𝜔

, (10)

subject to ∑ (𝑡𝑘,ℎ
(𝑏)

)
𝑎𝑘,ℎ

(𝑏)
∈𝕊𝑖,𝜔

= 𝑡(𝑎𝑖,𝜔
∗), 𝑖 ∈ [1, I],

where 𝕊𝑖,𝜔 = {a𝑘,ℎ
(b)

|a𝑘,ℎ
(b)

∈ 𝑇𝑃, 𝑅𝑘,ℎ
(𝑏)

= 𝑅𝑖 , 𝑇𝑘 = 𝑇𝜔}.

The above min-max objective is used as all search plans will

be feasible within the allotted time if the longest duration plan

is feasible. Namely, if any mapping 𝑓: 𝑈𝐴𝜔 → 𝑇𝑃𝜔 generates

a feasible team plan, the min-max 𝑇𝑃𝜔 will also be feasible.

 To address the problem in Eq. (10), we extend the min-max

mTSP [27] and introduce our new min-max mRSP. The min-

max mTSP considers the problem of a team visiting multiple

regions while minimizing the longest duration robot plan [27].

This only considers closed tours, which arbitrarily start and

end at one of the regions to be visited, as well as a single robot

visiting each region. The duration of a closed tour is invariant

to the selected start/end region. However, we need to consider

the starting regions of the robots which may not coincide with

the regions in 𝑈𝐴𝜔. As a result, there may be additional time

required for a robot to move to the first search region. There is

also no need for a robot to return to its starting location, and it

may be beneficial for multiple robots to work together in

searching a single region. Therefore, our min-max mRSP

includes the additional considerations of robots: 1) starting

regions, 2) not returning to their starting regions, and 3)

working together to complete a single team search action. We

model the min-max mRSP using a search region network,

where the distances between regions are stored in a distance

matrix, and the search times for the regions are stored in a

vector. To solve this min-max mRSP, we present a novel

fuzzy clustering team search action allocator. Fuzzy clustering

was used as it is the only clustering method that allows for

region sharing between robots. Hence, multiple robots can

collaboratively search a single region. This differs from

existing approaches that require only one assigned robot to

search a specific region without the aid of other robots.

1) Fuzzy Clustering Team Search Action Allocator

Fuzzy clustering [29] is a clustering method in which a

team action can be shared between multiple robots. Our fuzzy

clustering approach uses expectation maximization (EM) [30].

In each time period, 𝑇𝜔, a set of fuzzy clusters, 𝐹𝐶𝜔 =

{𝐹𝐶𝜔,1, … , 𝐹𝐶𝜔,𝐹} is considered. Each cluster is represented as

𝐹𝐶𝜔,𝑓 = {ℝ𝜔,𝑓 , 𝜌1,𝜔,𝑓 , … , 𝜌𝐼,𝜔,𝑓}, where 𝑓 is the cluster’s

unique ID, ℝ𝜔,𝑓 is the robot assigned to the cluster, and each

𝜌
𝑖,𝜔,𝑓

 is the ownership of 𝐹𝐶𝜔,𝑓 over action 𝑎𝑖,𝜔
∗ ∈ 𝑈𝐴. The set

of parameters ℝ𝜔,𝑓, ∀𝑓 ∈ [1, 𝐹] and 𝜌
𝑖,𝜔,𝑓

, ∀𝑖 ∈ [1, 𝐼] are

determined to minimize the highest cluster cost while the

robot team completes the team actions specified in 𝑈𝐴𝜔:

min
𝐹𝐶𝜔

max
𝑓

 Ψ(𝐹𝐶𝜔,𝑓), (11)

subject to ∑ (𝜌𝑖,𝜔,𝑓)𝑓∈[1,𝐹] = 1, 𝑖 ∈ [1, I],

where Ψ(𝐹𝐶𝜔,𝑓) is the cost of cluster 𝐹𝐶𝜔,𝑓, representing the

 𝑹𝟏 𝑹𝒊 𝑹𝒊+𝟏 𝑹𝑰+𝟏

T
im

e
 E

la
p

se
d

𝟎

𝒕𝒖𝒏𝒊𝒕

𝑸𝜔

𝑸𝜔 + 𝒕𝑖,𝜔 + 𝒕𝒎𝒐𝒗𝒆

𝑵𝑸𝝎

𝒊

 𝑩𝒕𝒑𝒆𝒓𝒊𝒐𝒅

 Region

𝑬𝒕(𝒂𝒊,𝝎
∗)

𝒊

7

amount of time the robot ℝ𝜔,𝑓 would take to perform the set

of actions associated with 𝐹𝐶𝜔,𝑓. The constraint in Eq. (11)

guarantees all actions in 𝑈𝐴𝜔 are completed by the team.

Fig. 4. Architecture of fuzzy clustering solver for min-max mRSP.

Our overall fuzzy clustering approach is presented in Fig. 4.

Starting with 𝑈𝐴𝜔, we generate initial clusters without robots,

i.e. ℝ𝜔,𝑓 = NULL. In the expectation step the cost of each

cluster, Ψ(𝐹𝐶𝜔,𝑓), is evaluated. Next, the maximization step

updates the values of 𝜌𝑖,𝜔,𝑓 to reduce the highest cost cluster.

Then the expectation step is repeated. If no beneficial change

is made by the maximization step, the first EM phase is

completed, and we assign robots to the clusters and the EM

phase is repeated with the assigned robots. After the second

EM phase, we add the highest cost cluster to the proposed

team plan as a robot search plan. If the team plan has fewer

than B robot search plans, the EM phase with robots is

repeated to minimize the maximum cost of the remaining

clusters. Once the proposed team plan has B robot search

plans, we check if it is the best team plan generated thus far

with minimum longest duration search plan, Eq. (10). If

planning time remains, the entire approach is repeated to

generate multiple proposed team plans. If not, the best

proposed team plan is output as 𝑇𝑃𝜔.

 We first perform an EM phase on clusters with the robots

unassigned to distribute actions without being restricted by

robot locations. Then, robots are assigned for the second EM

phase so the clusters can optimize for the robot locations.

Moreover, by iteratively adding the highest cost cluster, the

EM can further improve all cluster costs. The details of each

module in our clustering architecture are discussed below.

a. Generate Initial Clusters Without Robots

Using the unallocated actions 𝑈𝐴𝜔, an initial set of 𝐹 = 𝐵

clusters 𝐹𝐶𝜔 is generated such that the joint ownership of all

the clusters accounts for all actions in 𝑈𝐴𝜔, Eq. (11). The

approach used to determine the initial clusters is K-means++,

which fully assigns each action 𝑎𝑖,𝜔
∗ with search duration

𝑡(𝑎𝑖,𝜔
∗) > 0 to a single cluster, 𝐹𝐶𝜔,𝑓, by setting the

corresponding 𝜌𝑖,𝜔,𝑓 to 1 [31]. ℝ𝜔,𝑓 is set to NULL for all

clusters, indicating that a robot is not assigned. Once the initial

cluster 𝐹𝐶𝜔 is generated, the expectation is calculated.

b. Expectation: Determine Cost of Clusters

To compute the cost of a cluster Ψ(𝐹𝐶𝜔,𝑓) we first

determine the order in which the actions will be performed,

referred to as the cluster plan 𝐶𝑃𝜔,𝑓 = (𝑎𝜔,1
(𝑓),𝐶𝑃

, … , 𝑎
𝜔,𝑀𝑓

𝐶𝑃
(𝑓),𝐶𝑃

).

𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 denotes the 𝑔𝑡ℎ search action of the cluster plan with

search region 𝑅𝑔
(𝑓),𝐶𝑃

, time period 𝑇𝜔, and search duration

𝑡 (𝑎𝜔,1
(𝑓),𝐶𝑃

). 𝐶𝑃𝜔,𝑓 must complete all actions with both non-

zero ownership and search duration in 𝐹𝐶𝜔,𝑓. If 𝑎𝑖,𝜔
∗ is mapped

to 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

, then 𝑡 (𝑎𝜔,𝑔
(𝑓),𝐶𝑃

) = 𝜌𝑖,𝜔,𝑓𝑡(𝑎𝑖,𝜔
∗) and 𝑅𝑔

(𝑓),𝐶𝑃
= 𝑅𝑖.

To determine 𝐶𝑃𝜔,𝑓, we solve the TSP [32]. 𝑇𝑆𝑃1, considers

when the cluster does not have a robot assigned and ℝ𝜔,𝑓 =

𝑁𝑈𝐿𝐿. 𝑇𝑆𝑃2, considers when ℝ𝜔,𝑓 ≠ 𝑁𝑈𝐿𝐿.

𝑻𝑺𝑷𝟏: During the first EM phase, ℝ𝜔,𝑓 = 𝑁𝑈𝐿𝐿, a closed tour

is considered with arbitrary start/end region, 𝑅1
(𝑓),𝐶𝑃

. The

objective is to generate 𝐶𝑃𝜔,𝑓 with minimum total travel time:

Ψ(𝐹𝐶𝜔,𝑓) = min
𝐶𝑃𝜔,𝑓

∑ (𝑡
𝑅𝑔−1

(𝑓),𝐶𝑃

𝑅𝑔
(𝑓),𝐶𝑃

) + 𝑡
𝑅

𝑀𝑓
𝐶𝑃

(𝑓),𝐶𝑃

𝑅1
(𝑓),𝐶𝑃𝑀𝑓

𝐶𝑃

𝑔=2 . (12)

𝑻𝑺𝑷𝟐: During the second EM phase, ℝ𝜔,𝑓 = ℝ𝑏, the start

region is the robot’s initial region during 𝑇𝜔, denoted as 𝑅𝜔,0
(𝑏)

,

and the robot is not required to return to 𝑅𝜔,0
(𝑏)

. The objective is

again to generate 𝐶𝑃𝜔,𝑓 while minimizing total travel time:

Ψ(𝐹𝐶𝜔,𝑓) = min
𝐶𝑃𝜔,𝑓

𝑡
𝑅𝜔,0

(𝑏)

𝑅1
(𝑓),𝐶𝑃

+ ∑ (𝑡
𝑅𝑔−1

(𝑓),𝐶𝑃

𝑅𝑔
(𝑓),𝐶𝑃

)
𝑀(𝑓)
𝑔=2 . (13)

For both TSP cases, a Lin-Kernighan heuristic (LKH)

approach [33] is used to generate the solution in real-time.

After solving the TSP, we have the cost of each cluster

Ψ(𝐹𝐶𝜔,𝑓) and the current value of the objective in Eq. (12).

To minimize the objective, we perform the maximization step.

c. Maximization: Reduce Cost of Clusters

To reduce the cluster with the highest cost 𝐹𝐶̅̅̅̅
𝜔, we aim to

transfer ownership to another cluster 𝐹𝐶𝜔
′ . To achieve this, we

first attempt to transfer ownership from 𝐹𝐶̅̅̅̅
𝜔 to the cluster

closest to it, 𝐹𝐶𝜔
̇ , where cluster distance is defined by their

closest pair of actions. If this transfer results in an increase to

the objective in Eq. (11), then the transfer is not performed,

and we group 𝐹𝐶̅̅̅̅
𝜔 and 𝐹𝐶𝜔

̇ into a group called the close set,

𝐶𝑆. The remaining clusters are grouped into the far set, 𝐹𝑆.

After creating 𝐶𝑆 and 𝐹𝑆, we iteratively attempt to transfer

ownership from 𝐶𝑆 to 𝐹𝑆 using the procedure in Fig. 5.

Step 1: Create Close and Far Sets of Clusters

 Initially, we create a close set of clusters, 𝐶𝑆, containing

only the cluster with the highest cost 𝐹𝐶𝜔
̅̅ ̅̅ ̅̅ and a far set of

clusters, 𝐹𝑆, containing the rest of the clusters in 𝐹𝐶𝜔.

Unallocated Actions in 𝑇𝜔 (𝑈𝐴𝜔)

Team Plan during 𝑇𝜔 (𝑇𝑃𝜔)

If Number of

Clusters in
Proposed Team

Plan < B

If Clusters Unchanged

and Robots Unassigned

If

Clusters

Changed

 Assign Robots

Generate Initial Clusters

Without Robots

If Number of Clusters in

Proposed Team Plan = B

Add the Highest Cost Cluster to

the Proposed Team Plan

If Planning Time Exceeded

Expectation: Determine Cost of

Clusters

If Planning
Time Not

Exceeded

Check if Proposed Team Plan is

the Best Team Plan

Maximization: Reduce Cost of

Clusters

8

Step 2: Transfer Action Ownership from Close Set to Far Set

 To transfer action ownership from CS to FS, the closest pair

of clusters between the two sets are selected, {𝐹𝐶𝜔,𝑓 ∈

𝐶𝑆, 𝐹𝐶𝜔,𝑓′ ∈ 𝐹𝑆}. The distance 𝐶𝑇𝑓
𝑓′

 between 𝐹𝐶𝜔,𝑓 and

𝐹𝐶𝜔,𝑓′ is determined based on their closest pair of actions

with non-zero search times, 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 and 𝑎
𝜔,𝑔′

(𝑓′),𝐶𝑃
. The distance

between 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 and 𝑎
𝜔,𝑔′

(𝑓′),𝐶𝑃
 is the travel time for moving

between their corresponding regions.

Fig. 5. Flow chart of maximization step.

We aim to transfer ownership 𝜌𝑖,𝜔,𝑓 of 𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 from 𝐹𝐶𝜔,𝑓 to

𝐹𝐶𝜔,𝑓′. Similar to when solving the CMPMKP, we require

that all search actions 𝑎𝜔,1
(𝑓),𝐶𝑃

 have a duration 𝑡 (𝑎𝜔,1
(𝑓),𝐶𝑃

) that is

a multiple of 𝑡𝑢𝑛𝑖𝑡. Therefore, an amount of ownership of

𝜌𝑖,𝜔,𝑓, denoted as 𝜌𝑖,𝜔
+ , can only be transferred in multiples of

𝑡𝑢𝑛𝑖𝑡

𝑡(𝑎𝑖,𝜔
∗)

. After a transfer, the resulting ownerships of 𝐹𝐶𝜔,𝑓 and

𝐹𝐶𝜔,𝑓′ over action 𝑎𝑖,𝜔
∗ are:

 𝜌𝑖,𝜔,𝑓
+ = 𝜌𝑖,𝜔,𝑓 − 𝜌𝑖,𝜔

+ , (14a)

𝜌𝑖,𝜔,𝑓′
+ = 𝜌𝑖,𝜔,𝑓′ + 𝜌𝑖,𝜔

+ . (14b)

The new costs are Ψ+(𝐹𝐶𝜔,𝑓) and Ψ+(𝐹𝐶𝜔,𝑓′), respectively.

We select the largest 𝜌𝑖,𝜔
+ such that Ψ+(𝐹𝐶𝜔,𝑓′) does not

exceed the worst cluster cost Ψ(𝐹𝐶𝑓
̅̅ ̅̅ ̅). Also, the new receiving

cluster cost Ψ+(𝐹𝐶𝜔,𝑓′) must not exceed the original giving

cluster cost Ψ(𝐹𝐶𝜔,𝑓) if on the next iteration of the

maximization step 𝐹𝐶𝜔,𝑓′ will receive an action before 𝐹𝐶𝜔,𝑓:

maximize 𝜌𝑖,𝜔
+ , (15)

subject to Ψ+(𝐹𝐶𝜔,𝑓′) < Ψ(𝐹𝐶𝑓
̅̅ ̅̅ ̅),

 Ψ+(𝐹𝐶𝜔,𝑓′) < Ψ(𝐹𝐶𝜔,𝑓), 𝑖𝑓 𝜌𝑖,𝜔,𝑓
+ = 0 , 𝑎𝑖,𝜔

∗ = a�̃�,

where a�̃� is the action in 𝐹𝐶𝜔,𝑓 closest to 𝐶𝑆. If the maximum

value that satisfies Eq. (15) is 𝜌𝑖,𝜔
+ = 0, then a transfer is not

made and we add 𝐹𝐶𝜔,𝑓′ to the close set.

Step 3: Add the Cluster from the Far Set to the Close Set

If no transfer is performed, then 𝐹𝐶𝜔,𝑓′ is moved from 𝐹𝑆 to

𝐶𝑆. We let 𝐹𝐶�̃� = (𝐹𝐶𝜔,1̃, … , 𝐹𝐶𝜔,�̃�) indicate the clusters in

the order they are added to 𝐶𝑆. The costs of the clusters in

𝐹𝐶�̃� are denoted as Ψω̃ = (Ψ𝜔,1̃, . . , Ψ𝜔,�̃�). The objective in

iterating between steps 2 and 3 is to minimize Ψω̃:

minimize
𝜌𝑖,𝜔,𝑓,∀𝑖∈[1,𝐼]

 Ψω̃ , (16)

where (Ψ𝜔,1
′̃ , . . , Ψ𝜔,𝐹

′̃) < (Ψ𝜔,1̃, . . , Ψ𝜔,�̃�) 𝑖𝑓 ∃𝑓 ∈ [1, 𝐹]

 𝑠. 𝑡. Ψ𝜔,𝑓
′̃ < Ψ𝜔,�̃� , Ψ𝜔,𝑓′

′̃ = Ψ𝜔,𝑓′∀𝑓′ ∈ [1, 𝑓 − 1].

Namely, an improvement is only made if, on the next iteration

of the maximization step, the cluster with reduced duration

will be considered for an action transfer before the cluster with

increased duration. Note that the sequence 𝐹𝐶�̃� only changes

if a cluster transfers all ownership over its action a�̃� closest to

𝐶𝑆. Therefore, the constraints in Eq. (15) of step 2 ensure all

transfers result in a decrease of Ψω̃. Over several iterations of

the EM, this approach will decrease the highest cluster cost

while minimizing the increased cost incurred by other clusters.

The attempt of transferring ownership is repeated until a

transfer is made or the far set is empty. In the former case, we

update 𝐹𝐶𝜔 accordingly and repeat the expectation step, as

explained above in Section IV.E.1.b. In the latter case, we

assign robots to clusters, as discussed in Section IV.E.1.d. If

the robots are already assigned, we add the highest cost cluster

to the proposed team plan, detailed below in Section IV.E.1.e.

d. Assign Robots

After the EM steps are completed, robots are assigned to the

clusters by solving the linear bottleneck assignment problem

(LBAP) [34]. The objective of the LBAP is to determine the

optimal complete bipartite matching (CBM) which minimizes

the maximum cluster cost, Eq. (11). A CBM is a matching

which assigns exactly one robot to each cluster.

To find the optimal CBM we consider a subset 𝕊𝜔(𝑊𝑀𝑎𝑥)

of all robot-cluster pairs, ℝ × 𝐹𝐶𝜔, with a cost less than 𝑊𝑀𝑎𝑥 .

The cost of a robot-cluster pair for robot ℝ𝑏 and cluster 𝐹𝐶𝜔,𝑓

is determined by solving 𝑇𝑆𝑃2 for 𝐹𝐶𝜔,𝑓 with ℝ𝜔,𝑓 = ℝ𝑏. If

𝕊𝜔(𝑊𝑀𝑎𝑥) contains a CBM, a feasible plan can be formed

from the pairs in 𝕊𝜔(𝑊𝑀𝑎𝑥) as each robot can be uniquely

assigned to each cluster. To determine if 𝕊𝜔(𝑊𝑀𝑎𝑥) contains a

CBM, a maximum bipartite matching (MBM) is solved using

the Hopcroft-Karp algorithm [35] to determine the maximum

number of robots that can be uniquely assigned to a cluster.

To determine the optimal cost for 𝑊𝑀𝑎𝑥 , we initialize 𝑊𝑀𝑎𝑥

to the median cost of all robot-cluster pairs and perform a

binary search where the allowable costs for 𝑊𝑀𝑎𝑥 are the costs

of any of the robot-cluster pairs. We select the minimum 𝑊𝑀𝑎𝑥

with subset 𝕊𝜔(𝑊𝑀𝑎𝑥) that can form a CBM. The robot-

cluster pair with cost equal to the minimum 𝑊𝑀𝑎𝑥 is the robot-

cluster pair that minimizes the maximum cluster cost.

Therefore, the robot-cluster pair is the optimal assignment.

This robot-cluster assignment is selected and held constant, and

the LBAP is solved with the remaining robots and clusters to

minimize the remaining cluster costs.

Once all robots are assigned to a unique cluster, the EM

steps are repeated to farther minimize the maximum cluster

cost. The highest cost cluster is then added to the team plan.

e. Add the Highest Cost Cluster to the Proposed Team Plan

The highest cost cluster, 𝐹𝐶𝜔,𝑓 = 𝐹𝐶𝑓
̅̅ ̅̅ ̅, is added to the team

plan by assigning the cluster’s actions to robot search plan

𝑆𝑃𝜔
(𝑏)

, where ℝ𝑏 = ℝ𝜔,𝑓. Namely, we solve 𝑇𝑆𝑃2 using 𝐹𝐶𝜔,𝑓

Far Set Empty

If Transfer Fails
Far Set Not

Empty

Clusters before Maximization

Clusters after Maximization

If

Transfer

Succeeds
Add the Cluster from Far Set

to Close Set

Transfer Action Ownership from

Close Set to Far Set

Create Close and Far Sets of

Clusters

9

to generate cluster plan 𝐶𝑃𝜔,𝑓 and then set 𝑆𝑃𝜔
(𝑏)

= 𝐶𝑃𝜔,𝑓.

To assign the remaining robot plans, we remove ℝ𝑏 from the

list of robots and subtract the region search times in 𝑆𝑃𝜔
(𝑏)

 from

the region search times in 𝑈𝐴𝜔, then continue the allocation

from the expectation step in Fig. 4 with robots assigned.

Once 𝐵 search plans are added to the proposed team plan it

is complete and we check if it is the best team plan.

f. Check Proposed Team Plan is the Best Team Plan

If planning time remains after generating a proposed 𝑇𝑃𝜔 for

each time period 𝑇𝜔 sequentially, the search action allocation

process is repeated to propose an alternative team plan. If no

planning time remains, 𝑇𝑃 is generated by selecting the

proposed 𝑇𝑃𝜔 in each time period with minimum time for the

longest robot search plan, as per Eq. (10). 𝑇𝑃 is the output of

the Action Allocation to Robots module in Fig. 2.

F. Iterate if Infeasible Team Plan

As the team search action selection for 𝑈𝐴 occurs separately

from the action allocation which generates 𝑇𝑃, the feasibility

of 𝑇𝑃 must be verified. For 𝑇𝑃 to be feasible, it must satisfy

the constraint in Eq. (3). Namely, the plan for each robot in

each time period, 𝑆𝑃𝜔
(𝑏)

, must be completed within the allotted

time 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. If 𝑇𝑃 is not feasible, both the team search action

selection and action allocation to robots, Fig. 2, are repeated

with the estimated travel time 𝑡𝑚𝑜𝑣𝑒 increased by 𝑡𝑢𝑛𝑖𝑡.

At each iteration, 𝑇𝑃 is modified by truncating all actions

that cannot be executed within the allotted time 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. For

example, if 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠 and the plan for ℝ1 takes 990𝑠,

with the last action taking 180𝑠, then this action would be

truncated to 90𝑠. Of all the truncated plans, the one which

minimizes the objective in Eq. (3) is executed by the robots.

G. Plan Execution

For the team plan to be executed, each robot performs the

actions specified in their respective search plans. Namely,

robot ℝ𝑏 starts in region 𝑅0
(𝑏)

 and performs search plans

𝑆𝑃1
(𝑏)

, … , 𝑆𝑃Ω
(𝑏)

 sequentially. When ℝ𝑏 performs search action

𝑎𝜔,ℎ
(𝑏)

 it travels to 𝑅𝜔,ℎ
(𝑏)

 and then spends 𝑡𝜔,ℎ
(𝑏)

 to search 𝑅𝜔,ℎ
(𝑏)

during 𝑇𝜔. If the robot arrives at 𝑅𝜔,ℎ
(𝑏)

 before the start of 𝑇𝜔, it

waits for the start of 𝑇𝜔 before searching. To determine how to

search within a region, each robot follows the local grid-based

search planner discussed in Supplementary Material D. During

the search, if a target user is found, replanning occurs to

generate a new team plan for finding the remaining users.

H. Replanning

The replanning repeats the planning approach in Fig. 2, with

the following modifications. First, to account for all actions

executed by the robots prior to replanning, the reward for the

edges in the min-flow graphs in Eq. (9) are updated when

generating 𝑈𝐴 to account for the already completed actions:

 𝑊 (𝐸
𝑡(𝑎𝑖,𝜔

∗)
𝑖,𝜔) = − ∑ 𝑃 (⋃ 𝜃

𝑧,𝑖

𝑇𝐴
𝑖,𝜔′ω

𝜔′=1)𝑍
𝑧=1 (17)

 + ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝑇𝐴
𝑖,𝜔′ω−1

𝜔′=1)𝑍
𝑧=1 + ∑ 𝑃 (𝜃

𝑧,𝑖

𝐸𝐴𝑖,𝜔)𝑍
𝑧=1 ,

where 𝑇𝐴𝑖,𝜔′ is a set of actions that combine the newly planned

action 𝑈𝐴𝑖,𝜔′ and the actions already executed prior to

replanning 𝐸𝐴𝑖,𝜔′ . As such, the team search times 𝑡𝑞(𝑎𝑖,𝜔
∗) in

𝑇𝐴𝑖,𝜔′ are equal to the sum of the team search times 𝑡(𝑎𝑖,𝜔
∗) in

𝑈𝐴𝑖,𝜔′ and 𝑞(𝑎𝑖,𝜔
∗) in 𝐸𝐴𝑖,𝜔′ , i.e., 𝑡𝑞(𝑎𝑖,𝜔

∗) = 𝑡(𝑎𝑖,𝜔
∗) +

𝑞(𝑎𝑖,𝜔
∗). The time constraint in Eq. (3) is also updated to

account for the time already expended in each time period:

 𝑡(𝑆𝑃𝜔
(𝑏)

) ≤ 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑄𝜔 , ∀𝑆𝑃𝜔
(𝑏)

∈ 𝑇𝑃, (18)

where 𝑄𝜔 is the time spent during 𝑇𝜔 prior to replanning.

 The time and space complexity for the proposed team action

selection and action allocation approaches, and the overall 2-

MRPSS method are provided in Supplementary Material E.

V. IMPLEMENTATION SCENARIOS

We have tested our 2-MRPSS in various multi-robot search

scenarios. One application of interest is deploying multiple

robots in long-term care homes to find multiple dynamic

elderly residents in order for the robots to engage in social

human-robot interaction with them. The increasingly high

number of long-term care residents relative to care staff can

result in staff burnout [36]. Therefore, robots can assist staff by

providing residents with reminders of upcoming activities [20],

teleconferencing with family and friends [21], and facilitation

of recreational activities [37]. To provide such assistance, the

robots must first find the residents within the environments.

Our 2-MRPSS approach for finding residents in long-term

care considers the locations in which the residents perform

various activities of daily living including eating, meeting with

family and friends, watching television, reading, and taking a

nap. Some activities are performed in a resident’s own private

room such as taking a nap. The private rooms are not accessed

by other residents. Other activities are performed in shared

rooms such as eating in the dining hall, watching television in

the recreational room, reading in the garden, and meeting with

family and friends in the lobby. The shared rooms are accessed

by all residents. Some rooms are off-limits to the residents such

as the kitchen and robot charging station while some are off-

limits to the robots such as the nurses’ station.

Environment Layouts: The environment layouts considered

are informed by our long-term care partners. They consist of 26

private rooms, one for each resident, and several shared rooms.

The number of shared rooms ranges from 4 to 16. The total

number of all types of rooms is 30, 33, 36, 39, and 42 rooms.

The rooms are represented by regions and divided into cells,

with the largest regions containing 20 cells, resulting in 𝑡𝑚𝑎𝑥 =

440𝑠, as 𝑡𝑐𝑒𝑙𝑙 = 22s is required for a robot to search each

cell. 𝑡𝑢𝑛𝑖𝑡 was set equal to 𝑡𝑐𝑒𝑙𝑙 , and 𝑡𝑚𝑜𝑣𝑒 was initialized to 0.

An example environment layout is in Fig. 6, with shared room

and private room configurations as in Fig. 7.

Target Users: A subset of residents was selected to be found

by all robots. During each search, the dynamic residents visited

various regions, sometimes visiting a region more than once.

The number of target users was 1, 5, 10, 15, and 20 residents.

Time Frame: The searches occurred between 10:00am and

6:00pm, with a search duration of 15, 30, 45, 60, or 75 minutes.

10

Time Period: Each search used Ω = 3 time periods.

Robot Team: Multiple robots executed each team plan. The

robots moved at a speed of 0.8m/s. When searching a cell,

each robot was able to identify any resident in the cell. The

number of robots used were 1, 3, 5, 7, and 9 robots.

Planning Duration: Each search used 𝑡𝑝𝑙𝑎𝑛 = 10ms

planning duration.

Dataset: Each search used Y=30 days of simulated data for the

location models. The data set can be found on our website.

Search queries: All combinations of the above parameter

values were considered to test our MRPSS: environment size =

{30, 33, 36, 39, 42} shared rooms, search duration = {15, 30,

45, 60, 75} minutes, number of target users = {1, 5, 10, 15,

20}, and number of robots= {1, 3, 5, 7, 9}. Each combination

was repeated for a search start time = {10:00, 12:00, 14:00,

16:00, 18:00} on a 24-hour clock. This resulted in 3,125 trials.

A representative video of our 2-MRPSS method using a 3-

member robot team to search a 30 room environment for a 15

minute duration to find 5 target users is presented in here.

Fig. 6. Environment layout with 30 searchable rooms. Shared rooms (blue)

include: lobby (L) and recreational room (RR) - 8m x 8m; and dining room

(DR) and garden (G) - 8m x 10m. Private rooms (green) are represented by P -

4m x 4m. Unsearchable rooms (red) include: kitchen (K) - 4m x 8m; and

charging station (CS) and nurses’ station (NR) - 4m x 4m.

 (a) (b)

Fig. 7. Example layout of rooms: (a) shared garden, and (b) private room.

VI. SEARCH EXPERIMENTS

We conducted simulated experiments for our long-term care

implementation problem to investigate the performance of our

proposed method with respect to: 1) the team plan duration of

our action allocation to robots, and 2) the number of target

users found using our overall 2-MRPSS.

A. Experiment #1: Team Plan Duration Time

The purpose of the Action Allocation to Robots module

discussed in Section IV.E is to solve the min-max mRSP in

order to allocate a set of unallocated actions (𝑈𝐴) such that the

overall team plan duration is minimized. To generate 𝑈𝐴, as

discussed in Section IV.D, we must select parameter 𝑡𝑚𝑜𝑣𝑒 to

estimate the robot travel time between regions by considering

the impact of 𝑡𝑚𝑜𝑣𝑒 on 𝑈𝐴. Namely, we note that a larger

𝑡𝑚𝑜𝑣𝑒 results in fewer actions in 𝑈𝐴 and that it is easier to

optimally allocate a small number of actions due to the small

number of permutations. As the number of actions increases,

the number of permutations, and thus complexity of the

allocation problem, also increases. Therefore, we have

selected 𝑡𝑚𝑜𝑣𝑒 = 0, as the resulting 𝑈𝐴 from solving the

CMPMKP will have a large number of actions. This allows us

to test the capabilities of our clustering-based action allocator

in a hard, high complexity instance of the allocation problem.

Note that the solution to the min-max mRSP is a team plan

for a single time period, and the overall team plan is generated

by sequentially solving the min-max mRSP in each time

period. Thus, we consider the amount of time it takes the team

to perform the plan in each time period, 𝑡(𝑇𝑃𝜔), determined

by the longest robot search plan in that time period:

 𝑡(𝑇𝑃𝜔) = max
𝑏∈[1,𝐵]

𝑡(𝑆𝑃𝜔
𝑏). (19)

The mean team plan duration for a single search is the average

of 𝑡(𝑇𝑃𝜔), ∀𝜔 ∈ [1, Ω]. To avoid biasing the results towards

scenarios with longer search durations, which will have longer

team plan durations, we introduce the mean maximum search

time (MMST). The MMST considers the average 𝑡(𝑇𝑃𝜔) as a

percentage of the search time in a time period:

 MMST =
∑ 𝑡(𝑇𝑃𝜔)Ω

𝜔=1

Ω𝑡𝑝𝑒𝑟𝑖𝑜𝑑 . (20)

As we used 𝑡𝑚𝑜𝑣𝑒 = 0, an expected underestimate of the

travel time, all values of MMST will be above 100%.

Herein, we determine and compare the MMST of our

clustering method for action allocation against three potential

alternatives methods: 1) naïve [21], 2) random, and 3)

memetic [38]. The details of these alternative methods are

presented in the Supplementary Material F. We also provided a

validation study in the Supplementary Material G for the

selected planning duration of 𝑡𝑝𝑙𝑎𝑛 = 10ms to demonstrate

how all four allocation methods gain no additional

performance benefits from a planning duration above 10ms.

1) Results

 The MMST across various environment sizes, search

durations, number of target users, and number of robots for

our comparison are presented in Fig. 8. Each point represents

 (a) (b) (c) (d)

Fig. 8. Mean maximum search time across (a) environment size, (b) search duration, (c) number of target user, and (d) number of robots.

http://asblab.mie.utoronto.ca/research-areas/person-search-human-centered-environments
https://www.youtube.com/watch?v=hsF0qriqFMU

11

the mean of 625 trials. Results show that our clustering action

allocator outperformed the alternative allocators across all

scenarios with the exceptions of a 15 minute search duration,

where it was comparable with the memetic method, and a

single robot search, where all methods performed the same.

 For all combination of scenarios, 3,125 trials, the MMST

was 193% for our clustering method, 200% for the memetic,

234% for the naive, and 248% for the random methods.

Namely, the team plans generated by our clustering approach

were at least 7% faster than the alternatives. In general, our

clustering approach had a statistically lower mean maximum

search time than the alternatives as it: 1) considered all robot

locations simultaneously, and 2) had multiple robots cooperate

in searching a single region. As the naïve and random methods

considered each robot sequentially, they had inefficient travel

times. Although the memetic method did not have travel time

inefficiencies, the inability to assign multiple robots to a single

region resulted in an unbalanced workload. For example, in

one scenario, the memetic approach assigned all the cells in

both RR and DR to a single robot resulting in a long team plan

duration of 1,803s. For this scenario, our clustering approach

assigned another robot to assist in searching RR, resulting in a

shorter overall team plan duration of 1,618s.

 A non-parametric Kruskal-Wallis test (𝛼=0.05) conducted

for all 3,125 trials found that there was a statistically

significant difference in the MMST between the four action

allocators, 𝜒2(3) = 921, 𝑝 < 0.0001. A post-hoc Dunn’s test

(𝛼=0.05) with a Bonferroni correction (𝛼=0.0167) showed a

statistically significant difference between the clustering and

the alternatives: naïve allocators (𝑍(3125) = 17.7, 𝑝 <
0.0001), the random allocators (𝑍(3125) = 27.2, 𝑝 <
0.0001), and the memetic (𝑍(3125) = 4.70, 𝑝 < 0.0001).

B. Experiment #2: Number of Users Found

We investigated the mean success rate of finding target

users using our proposed aware 2-MRPSS with strong

coordination to solve the multi-robot search problem within a

deadline. To the authors’ knowledge there are currently no

existing approaches for solving this specific multi-robot search

problem. However, we were able to adapt both the segmented

(unaware with no coordination) [14] and sequential (aware

with weak coordination) [22] planners from the literature by

combining them with our two-stage approach of first selecting

team search actions and then generating robot plans. The

segmented planner assigns a unique area for each robot to

search, while the sequential planner generates a plan

sequentially for each robot. We compared our 2-MRPSS

approach to these methods in order to investigate the effect

that strong coordination has on maximizing the number of

dynamic users found within a deadline. The development

details of both these planners are in Supplementary Material H.

1) Results

The mean success rates for all three methods across various

environment sizes, search durations, number of target users,

and number of robots are presented in Fig. 9. Each point

represents the mean of 625 trials. The results show that our 2-

MRPSS approach outperformed the alternatives with the

exceptions of a 15 minute search duration, one target user, and

one robot. For these latter scenarios, the plans were all similar

as the majority of cases had only one action per robot or all

actions were assigned to a single robot.

The overall mean success rates across all scenarios (3,125

trials) in Fig. 9 is 61% for both the segmented and sequential

approaches, and 72% for our 2-MRPSS approach. Namely,

our approach searched several high probability locations

within the search duration, while the segmented approach

generally had at least one robot assigned to a search area with

low user probability and the sequential approach required

robots planning later in the process to accommodate existing

plans. For example, in a scenario with 3 robots searching for

15 users, our 2-MRPSS approach assigned the team to search

4 shared rooms as these had the highest user probabilities,

resulting in 13 users being found. However, in the segmented

approach, 2 robots searched 2 shared rooms where they found

8 users, and the third robot searched 4 private rooms where no

users were found. In the sequential approach, 2 robots

searched 2 shared rooms and a portion of another shared room.

Therefore, the third robot searched the remainder of the shared

room as well as 2 nearby private rooms in order to have

enough time to travel between rooms. 10 users were found in

the shared rooms and none in the private rooms.

A Kruskal-Wallis test (𝛼 = 0.05) showed a statistically

significant difference between the overall means, 𝜒2(3) =
118, 𝑝 < 0.0001. A post-hoc Dunn’s test (𝛼=0.05) with a

Bonferroni correction (𝛼=0.025) determined statistically

significant differences between our 2-MRPSS approach and

the 1) segmented method, 𝑍(3125) = 9.07, 𝑝 < 0.0001, and

2) sequential method, 𝑍(3125) = 9.69, 𝑝 < 0.0001.

VII. CONCLUSIONS

In this paper, we present a novel multi-robot person search

system for finding multiple dynamic users before a deadline in

human-centered environments considering user data. Our

aware 2-MRPSS approach with strong coordination

simultaneously considers all robot locations as well as user

location probability density functions when generating a team

plan. This allows our approach to minimize the team plan

duration such that it can search high probability user locations

 (a) (b) (c) (d)
Fig. 9. Mean success rate across (a) environment size, (b) search duration, (c) number of target user, and (d) number of robots.

12

within the deadline. Comparison experiments validate that our

approach has a lower mean maximum search time and is able

to find more targets before a deadline when compared to other

alternative methods. Our future work will consist of 1)

incorporating online evidence, similar to [19] within the user

location model from direct robot observations as they search

the environment, and 2) integrating our 2-MRPSS method

within a multi-robot control architecture with complementary

perception and human-robot interaction modules for deploying

a team of physical robots in partner long-term care centers.

REFERENCES

[1] B. Doroodgar, Y. Liu, and G. Nejat, “A Learning-Based Semi-Autonomous

Controller for Robotic Exploration of Unknown Disaster Scenes While
Searching for Victims,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2719–2732,

2014.

[2] Ł. Białek, J. Szklarski, M. Borkowska, and M. Gnatowski, “Reasoning with
four-valued logic in multi-robotic search-and-rescue problem,” Challenges in

Autom. Robot. and Meas. Techn., vol. 440, no. 1, pp. 483–499, 2016.

[3] Y. Liu and G. Nejat, “Multirobot Cooperative Learning for Semiautonomous
Control in Urban Search and Rescue Applications,” J. Field Robot., vol. 33, no.

4, pp. 512–536, 2016.

[4] W. Zhao, Q. Meng, and P. Chung, “A Heuristic Distributed Task Allocation
Method for Multivehicle Multitask Problems and Its Application to Search and

Rescue Scenario,” IEEE Trans. Cybern., vol. 46, no. 4, pp. 902–915, 2016.

[5] J. Turner et al., “Distributed Task Rescheduling With Time Constraints for
the Optimization of Total Task Allocations in a Multirobot System,” IEEE

Trans. Cybern., vol. 48, no. 9, pp. 2583–2597, 2018.

[6] S. Chen et al., “Decentralized Patrolling Under Constraints in Dynamic
Environments,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 3364–3376, 2016.

[7] D. Yanguas-Rojas, G.A. Cardona, J. Ramirez-Rugeles, E. Mojica-Nava,

“Victims search, identification, & evacuation with heterogeneous robot networks
for search and rescue,” IEEE Conf. on Auto. Control, pp. 1–6, 2017.

[8] A. Fung, L. Y. Wang, K. Zhang, G. Nejat, and B. Benhabib, “Using Deep

Learning to Find Victims in Unknown Cluttered Urban Search and Rescue
Environments,” Curr. Robot. Rep., vol. 1, no. 3, pp. 105–115, Sep. 2020.

[9] H. Xiao, R. Cui, and D. Xu, “A Sampling-Based Bayesian Approach for
Cooperative Multiagent Online Search with Resource Constraints,” IEEE Trans.

Cybern., vol. 48, no. 6, pp. 1773–1785, 2018.

[10] L. Lin and M. Goodrich, “Hierarchical Heuristic Search Using a
Gaussian Mixture Model for UAV Coverage Planning,” IEEE Trans. Cybern.,

vol. 44, no. 12, pp. 2532–2544, 2014.

[12] Z. Kashino, G. Nejat, and B. Benhabib, “Multi-UAV based Autonomous
Wilderness Search and Rescue using Target Iso-Probability Curves,” Int. Conf.

Unmanned Aircr. Systems, pp. 636–643, 2019.

[12] A. Macwan, J. Vilela, G. Nejat, and B. Benhabib, “A Multirobot Path-
Planning Strategy for Autonomous Wilderness Search and Rescue,” IEEE Trans.

Cybern., vol. 45, no. 9, pp. 1784–1797, 2015.

[13] J. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion without
mapping or global localization via local frontiers,” Auton. Robots, vol. 32, no. 1,

pp. 81–95, 2012.

[14] N. Basilico, T.H. Chung, and S. Carpin, “Distributed online patrolling with
multi-agent teams of sentinels and searchers,” Distrib. Auton. Robot. Syst., pp.

3–16, 2016.

[15] P. B. Sujit and D. Ghose, “Self assessment-based decision making for
multiagent cooperative search,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 4, pp.

705–719, 2011.

[16] S. Lee and Y. Kim, “Cooperative Reactive Persistent Surveillance
Algorithm Using Multiple UAVs Considering Incident Arrivals,” Int. Federation

of Autom. Control, vol. 50, no. 1, pp. 2347–2352, 2017.

[17] P. Dames, P. Tokekar, and V. Kumar, “Detecting, localizing, and tracking
an unknown number of moving targets using a team of mobile robots,” Int. J.

Robot. Res., vol. 36, no. 13–14, pp. 1540–1553, 2017.

[18] G. D. Tipaldi and K. O. Arras, “I want my coffee hot! Learning to find
people under spatio-temporal constraints,” IEEE Int. Conf. Robot. Autom., pp.

1217–1222, 2011.

[19] S. Lin and G. Nejat, “Robot Evidence Based Search for a Dynamic User in
an Indoor Environment,” ASME Int. Design Eng. Technical Conf. & Comp. and

Inf. in Eng. Conf., pp. 1–8, 2018.

[20] M. Schwenk, T. S. Vaquero, G. Nejat, and K. O. Arras, “Schedule-based
robotic search for multiple residents in a retirement home environment,” AAAI

Conf. Artificial Intell., pp. 2571–2577, 2014.

[21] S. C. Mohamed, S. Rajaratnam, S. T. Hong, and G. Nejat, “Person Finding:
An Autonomous Robot Search Method for Finding Multiple Dynamic Users in

Human-Centered Environments,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 1,

pp. 433–449, 2020.
[22] A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Searching and

tracking people with cooperative mobile robots,” Auton. Robots, vol. 42, no. 4,

pp. 739–759, 2018.
[23] R. Triebel et al., “SPENCER: A socially aware service robot for passenger

guidance and help in busy airports,” Field & Service Robot., pp. 607–622, 2016.

[24] S. F. Ochoa and R. Santos, “Human-centric wireless sensor networks to
improve information availability during urban search and rescue activities,” Inf.

Fusion, vol. 22, no. 1, pp. 71–84, 2015.

[25] A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: a classification
focused on coordination,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol.

34, no. 5, pp. 2015–2028, 2004.

[26] B. H. Faaland, “Technical note—The multiperiod knapsack problem,”
Oper. Res., vol. 29, no. 3, pp. 612–616, 1981.

[27] P. M. França, M. Gendreau, G. Laporte, and F. M. Müller, “The m-

Traveling Salesman Problem with Minmax Objective,” Transp. Sci., vol. 29, no.
3, pp. 267–275, 1995.

[28] R. Bellman, “On a Routing Problem,” Quart. Appl. Math., vol. 16, no. 1,

pp. 87–90, 1958.
[29] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy

covariance matrix,” IEEE Conf. Decision and Control including the 17th Symp.

Adaptive Processes, pp. 761–766, 1978.
[30] F. Dellaert, “The Expectation Maximization Algorithm,” Georgia Inst. of

Technol. Tech. Rep., pp. 1–7, 2002.
[31] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful

seeding,” Stanford Tech. Rep., pp. 1–11, 2006.

[32] J. Kruskal, “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Amer. Math. Soc., vol. 7, no. 1, pp. 48–50, 1956.

[33] K. Helsgaun, “An effective implementation of the Lin–Kernighan traveling

salesman heuristic,” Eur. J. Oper. Res., vol. 126, no. 1, pp. 106–130, 2000.
[34] R. E. Burkard and U. Derigs, “The Linear Bottleneck Assignment

Problem,” Assignment and Matching Problems: Solution Methods with

FORTRAN-Programs, vol. 184, no. 1, pp. 16–24, 1980.
[35] J. Hopcroft and R. Karp, “An n^5/2 algorithm for maximum matchings in

bipartite graphs,” SIAM J. Comput., vol. 2, no. 4, pp.225–231, 1973.

[36] G. S. Rai, “Burnout Among Long-Term Care Staff”, Admin. in Social

Work, vol. 34, no. 3, pp. 225–240, 2010.

[37] J. Li, W. G. Louie, S. Mohamed, F. Despond, and G. Nejat, “A user-study

with Tangy the bingo facilitating robot and long-term care residents,” Int. Symp.
on Robot., Intell. Sensors, pp. 1–7, 2016.

[38] Y. Wang et al., “Memetic algorithm based on sequential variable

neighborhood descent for the minmax multiple traveling salesman problem,”
Comp. Ind. Eng., vol. 106, no. 1, pp. 105–122, 2017.

Sharaf C. Mohamed completed his Ph.D. in 2021 in the
Department of Mechanical & Industrial Engineering

(MIE) at the University of Toronto (UofT). He was a

member of the Autonomous Systems and
Biomechatronics Laboratory (ASBLab). His research

interests include multi-robot coordination, human-robot

interaction, and autonomous robotics. He received his
B.A.Sc. in Electrical & Computer Engineering at UofT.

Angus Fung is a Ph.D. candidate in MIE at the

University of Toronto (UofT). He is a member of the

Autonomous Systems and Biomechatronics Laboratory

(ASBLab). His research interests include robotics and

computer vision. He received his B.A.Sc. in Engineering
Science (Robotics) at UofT.

Goldie Nejat (S’03-M’06) is the Canada Research Chair

in Robots for Society and a Professor in MIE at UofT.

She is the Founder/Director of the ASBLab. She is also
an Adjunct Scientist at both KITE in the Toronto

Rehabilitation Institute, and the Rotman Institute at

Baycrest Health Sciences. Her research interests include
intelligent assistive/service robots, human-robot

interactions, robot learning and autonomous control. She
received her B.A.Sc. and Ph.D. degrees in Mechanical Engineering at UofT.

